PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes for Lecture 8 — Chap. 3 F & W

Calculus of variation
1. Various examples — Area of lamp shade
2. Brachistochrone problem

3. Calculus of variation with constraints
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Presenter
Presentation Notes
In this lecture, we will continue to develop  notions of the calculations of variation.   Next time we will show how they may be applied to classical mechanics.
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

" [Date F&W Reading Topic Assignment |Due

1 Mon, 8/23/2021 |Chap. 1 Introduction #1 8/27/2021
2 Wed, 8/25/2021 |Chap. 1 Scattering theory #2 8/30/2021
3[Fri, 8/27/2021 |[Chap. 1 Scattering theory

n Mon, 8/30/2021 |Chap. 1 Scattering theory #3 9/01/2021
s Wed, 9/01/2021 |Chap. 1 Summary of scattering theory [#4 9/03/2021
6 Fri, 9/03/2021 |Chap. 2 Non-inertial coordinate systems [#5 9/06/2021
7 Mon, 9/06/2021 |Chap. 3 Calculus of Variation #6 9/10/2021

» 8 Wed, 9/08/2021 |Chap. 3 Calculus of Variation
9 Fri, 9/10/2021 |Chap.3 & 6 |Lagrangian Mechanics #7 9/13/2021
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Presenter
Presentation Notes
There is one homework problem for this lecture.


®
Summary of the method of calculus of variation --

Consider a family of functions y(x), with the end points

y(x;) =y, and y(x,) = y, and an integral function

1({y<x>,%},x]= | f(y<x>,%;x]dx.

Find the function y(x) which extremizes / [{ y(x),%},xj.
X

ol =0 = Euler-Lagrange equation:

a _d o =0 forallx, <x<x,
oy ) & dx|| o(dy/dx) .

9
dx - 7



Presenter
Presentation Notes
Summary of equations to use.


@Example: Find minimum curve between points -- y(0) = 0; y(1) =1

(e sl (2)

fi
(%j @ (a (df; dx)ly =0

( \
:>_d dy [ dx 2 0
Solution: dx\\/1+(dy / dx) J
( )
dy / dx _x Q:K'z K
L+ (dvdx) dx - K

= y(x)=K'x+C y(x)=x


Presenter
Presentation Notes
Your homework problem is very similar to this.      Actually stopped at this slide.    Will continue discussion on Wednesday.


B

Another example:

Lamp shade shape y(x)

A= 27zj \/1+(Z)y€j dx

d

o

af d
oy ) dx

dx —

d
:_

(8(dy/dx)]x,y

.

xdy / dx

dx
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Here is another example of the use of calculus of variation.


( )

d xdy / dx 0

dx| 1+ (dy/ dx)
xdy / dx
JU+(dy ) dx)
&y 1

=K,

O

2
X X
= (x)=K.—-K. In|l —+ [——1
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Presentation Notes
After these steps, the solution is found up to some constants.


General form of solution --

y(x)=K, Kh{iJr x 1}

K \K?

Suppose K, =1 and K, = 2+/3
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9/08/2021 PHY 711 Fall 2021 -- Lecture 8

)

In




1.2
! (2443
0.8 x)=In
0.6 \x+\/x
0.4
0.2
0

0.5 1 L5 2
X

dx

A= 27zj \/1+(dyj dx =15.02014144

(according to Maple)
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Presentation Notes
Evaluating results for particular boundary values.


revens aw o fr )
Review: for f|{y(x),—¢, x|,
dx

Xr
a necessary condition to extremize I f G y(x),?},x]dx ;
| X

o d of |
gl _ 0 _
(5ij,dy dx K@(dy/dx)jxj <: Euler-Lagrange equation

dx

Note that for f [{y(x),ﬂ},xj,

dx
I (v (o \d dy+(@j
dx \ oy )dx \a(dy/dx))dx dx \ éx

(d( o dy (o a’a’yJ{@_fj
dx\o(dy/dx)))dx \o(dy/dx))dx dx \ ox

:i ,o of dy _ af Alternate Euler-Lagrange
dx oldy/dx)dx ) \ ox equation
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Presentation Notes
Summary of the equations we worked out last time.


A few more steps --

Note that for

D
f ({y(X), dx}, ]

dx \ oy

a (o dy+ of d dy+(8f
dx | &

dy/dx) ) dx dx \ ox

)

} (Ze (a(dij; a’x)D Zfe T [a(di]; dx)j

d
:E(f o
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Brachistochrone problem: (solved by Newton in 1696)

http://mathworld.wolfram.com/BrachistochroneProblem.html

0- | |
' Note that the increment of travel time A particle of welg ht
mgq travels

_ i : path length  ds ~
0.57 is di = = frictionlessly down a

y 1 _: et I path qf shape y(x).
1 What is the shape of
B 1_5_3 the path y(x) that
; minimizes the travel
91 | | | | , _J time from
0 1 2 3 y(0)=0to y(n)=-2"?
| X

Ezamv2 + mgy

With the choice of 1nitial conditions, £ =0


Presenter
Presentation Notes
This is the famous problem.

http://mathworld.wolfram.com/BrachistochroneProblem.html

®
Vote for your favorite path

0 i

-0.51

1
y L

-1.5

e

Which gives the shortest time?
a. Green
b. Red

c. Blue
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Presentation Notes
What curve will win the race?


Lav,2 —
x because -mv’ =-mgy

1 + (dJ/jz
d dx Note that for the original form of
f({y(xxd—i},x]:\ &

dx

—y Euler-Lagrange equation:
i(f— of  dv)_, [@) 4l & »
dx L 8(dy / dx) dx/ oy x’% dx i ﬁ(dy/dx) - )
[ ) differential equation is more complicated:
2
d | ~0 - d_y d_y
dx 2 1 dx d dx
dy —_ — =0
-y 1+ d— 2 —y3 dx d 2
e oE
/
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Presentation Notes
Some details of the Euler-Lagrange equations.      The green equations look harder.


df, o & (@j
dx\”  ody/dx)dx) \éx

= d 1 =0 -y 1+(dy) =K =2a
dx \/ L d 2] dx
34
_y 1_|_ v
(dx) . . q .
\ / Question — why this choice?
Answer — because the answer

will be more beautiful. (Be sure
that was not my cleverness.)
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Presentation Notes
Calling the integration 2a is very convenient.


2
y£1+(—j )—K=2a Let y:—2asin2§:a(cos9—l)
dy  2asin§cosfdf

- = = dx
b __ /2_(1_1 2_a_1 2a 1
dx —Y -y 2asin® ¢

dy —J 0

NE x = [ al—cos 0)d0'= a9 —sin 0)
L 0
-

Parametric equations for Brachistochrone:

x = a(6 —sin )
y=alcosf—1)


Presenter
Presentation Notes
Very clever mathematics.


Parametric plot --
plot([theta-sin(theta), cos(theta)-1, theta =0 .. Pi])

0
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Presentation Notes
Visualization of the result.


®
Checking the results

T=infinite
T=5.2668
T=4.4429

9/08/2021

-0.5

-1.57

1

(units of

J(2g)
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How did you do with your bet?


®
Summary of the method of calculus of variation --

Consider a family of functions y(x), with the end points

y(x;) =y, and y(x,) = y, and an integral function

1({y<x>,%},x]= | f(y<x>,%;x]dx.

Find the function y(x) which extremizes / [{ y(x),%},xj.
X

ol =0 = Euler-Lagrange equation:

a _d o =0 forallx, <x<x,
oy ) & dx|| o(dy/dx) .

9
dx - 7



Presenter
Presentation Notes
Summary of equations to use.


Euler-Lagrange equation:

o) _dlf_o
Oy ) 4 dx \8(dy/dx))

"dx — e

Alternate Euler-Lagrange equation:

d( of  dy) (gj

Ekf_ o(dy/dx)dx |\ ox



Presenter
Presentation Notes
It is a good idea to remember these equations.


Another example optimization problem:

Determine the shape y(x) of a rope of length L and mass
density p hanging between two points

X1Y1

XY
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Presenter
Presentation Notes
Another example needing extra information.


Example from internet --




Potential energy of hanging rope::

X5 dy 2
E = 14 dx
pg j y\/ ( dxj

Length of rope:

Deﬁne a composite function to minimize :

W=FE+AL
= Lagrange multiplier


Presenter
Presentation Notes
How to minimize with a constraint.


oW =0=0E+ AoL for fixed 4
1s a very clever mathematical trick to
help solve the minimization and

constraint at the same time.





Presenter
Presentation Notes
Applying the equations.


Y=
pg

X—d

E/I + K cosh(

K/ pg

)



y(x)=—1[/1+1<cosh( r—a D
Pg K/ pg

Integration constants : K,a, A

Constraints: y(x,) =y,
YV (xz) = Vs

X5 2
j\/l+(dyj dx =L
: dx
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Presentation Notes
The solutions in (almost) convenient form.


or

Summary of results

For the class of problems where we need to perform an extremization

on an integral form:

I = j:f({y(x),%},xjdx ol =0
s X

A necessary condition 1s the Euler-Lagrange equations:

(%j ) iﬂa(dj dx)ﬂ -9

4y T (T
de\”  8(dy/dx)dx) \ox



Presenter
Presentation Notes
Summary again.


Application to particle dynamics — next time --
x—t (time)
y —>¢q (generalized coordinate)
f —> L (Lagrangian)
I —>Aor§ (action)

. d
Denote: qz—q
dt


Presenter
Presentation Notes
We will now start to apply this mathematics to the physics of motion.    Here we map the variables that will apply.    A is called “action”.   L is called “Lagrangian”.
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