PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Discussion of Lecture 9 — Chap. 3F & W

Calculus of variation applied to classical
mechanics

1. Hamilton’s principle
2. D’Alembert’s principle

3. Lagrange’s equation in generalized coordinates
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Presentation Notes
In this lecture, we will continue to develop  notions of the calculations of variation and to start to show how they may be applied to classical mechanics.


Course schedule

(Preliminary schedule — subject to frequent adjustment.)

Date F&W Reading |Topic Assignment Due
1|Wed, 8/26/2020[Chap. 1 Introduction #1 8/31/2020
2 Fri, 8/28/2020 |(Chap. 1 Scattering theory B2 9/02/2020
3 Mon, 8/31/2020 (Chap. 1 Scattering theory #3 9/04/2020
4 Wed, 9/02/2020|Chap. 1 Scattering theory
5 Fri, 9/04/2020 ||Chap. 1 Scattering theory #4 9/09/2020
6 Mon, 9/07/2020|Chap. 2 Non-inertial coordinate systems
7 Wed, 9/09/2020 |Chap. 3 Calculus of Variation #o 9/11/2020
8 Fri, 9/11/2020 ||Chap. 3 Calculus of Variation #6 9/14/2020
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There is one homework problem for this lecture.


PHY 711 — Assignment #7

September 10, 2021

This exercise is designed to illustrate the differences between partial and total derivatives.

1. Consider an arbitrary function of the form f = f(q,q,t), where it is assumed that ¢ = ¢(t)
and ¢ = dq/dt.

(a) Evaluate
o4 _dos

dgdt dt dq

(b) Evaluate
ddf dof

dgdt dt dq

(¢) Evaluate
df
dt’

(d) Now suppose that
flg.q4,t) = q¢*t*, where q(t) =e™"/".
Here 7 is a constant. Evaluate df /dt using the expression you just derived. Now find the
011053 Ej1res.ﬂ;iuu for f as an expli(rilig lfivl];q%i{i%lal”{'éng;] ( fL(et‘C)tgjréugul take its time derivative dirm;'t?;
to check your previous results.



Your questions —

From Can —
1. Is there something related between dq and Fourier series ?



®
Summary of equations from calculus of variation --

For the class of problems where we need to perform an extremization

on an integral form:

I = j:f({y(x),%},xjdx ol =0
2 X

A necessary condition 1s the Euler-Lagrange equations:

(%j } ccha(d,f]; dx)ﬂ =9

4y T (T
de\”  8(dy/dx)dx) \ox
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Summary again.


Application to particle dynamics
x—t (time)
y —>¢q (generalized coordinate)
f —> L (Lagrangian)
I —>AorS (action)

. d
Denote: q——q
dt

S:jL({q q} )dt
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Presentation Notes
We will now start to apply this mathematics to the physics of motion.    Here we map the variables that will apply.    A is called “action”.   L is called “Lagrangian”.


Application to particle dynamics
Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral

S = jL q.q}:t)dt jL({yZ} ja’t

Simple example. vertical trajectory of particle of mass m subject
to constant downward acceleration a=-g.

. d’
Newton's formulation: m dtév =—mg
Resultant trajectory: y(t)=y, +vit—Lgr’

Lagrangian for this case:

1 (dy ’
L=—m|—| —m
2 (dtj &
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Presentation Notes
Here we will show how Newton’s laws can be written in terms of the Lagrangian formalism.


http://www-history.mcs.st-and.ac.uk/Biographies/Hamilton.html

9/18

Sir William Rowan Hamilton

Sitemap

Home

Biography
Mathematical studies
Optics and Dynamics
Quaternions
Quotations

Hamilton Key Dates
Hamilton Links
Graphics

Math News

Wednesday, September 11th, 201

Tribute to Sir William Hamilton (1 38051 865)

Hello and welcome! This page is dedicated to the life and work of Sir William
Rowan Hamilton.

Wiliam Rowan Hamilton was Ireland's greatest scientist. He was an
mathematician, physicist, and astronomer and made important works in
optics, dynamics, and algebra.

His contribution in dynamics plays a important role in the later developed
guantum mechanics. His name was perpetuated in one of the fundamental
concepts in quantum mechanics, called "Hamiltonian".

The Discovery of Quaternions is probably is his most familiar invention
today.

2005 was the Hamilton Year, celebrating his 200th birthday. The year was
dedicated to celebrate Irish Science. 2005 was called the Einstein year also,
reminding of three great papers of the year 1905. So UNESCO designated
2005 to the World Year of Physics

Thanks for visiting this site! Please enjoy your stay while browsing through
the pages.
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In addition to Euler and Lagrange, we need to thank Hamilton as well.

http://www-history.mcs.st-and.ac.uk/Biographies/Hamilton.html

William Rowan Hamilton

1805-1863 - *,‘

https://irishpostalheritagegpo.wordpress.com/2017/06/08/william-rowan-hamilton-irish-mathematician-and-scientist/
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Now consider the Lagrangian defined to be :

J’(f) — f
Kinetic Potential
energy energy

In our example:

g e)er-vgalg]) -me

Hamilton's principle states:

by
S = I L({ y(t),%},tjdt 1s minimized for physical y(7):
t [
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First we will show that it works with these relationships and then we will justify how this might work.


Condition for minimizing the action in example:

(1 dy i
S=\l—m| = | —m dt

Euler-Lagrange relations:
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Action is sometimes A and sometimes S.


Check:

(1 (ayY
S=!(Em(zj —mgyjdt

Assume t,=0, y,=h=1gT* t,=T, y,=0
Trial trajectories: y,(1)=1gT*(1-¢/T)=h—-1gTt
» () =1gT*(1-£2/T*) = h—Lgr’
y3(t)=%gT2(1—t3/T3):h—%gt3/T
Maple says:
S, =-0.125mg’T’

=-0.167Tmg’T

S, =-0.150mg’T"
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Checking the minimization.


Jean d’Alembert 1717-1783
French mathematician and philosopher

“Deriving” Lagrangian
mechanics from Newton’s
laws.

The Lagrangian function is:

L({{ql. (1)} ,{%}},t} =T-U ¢q.(¢) are generalized coordinates

Hamilton's principle states:

Ly

S = j L({{ql(t)}{ }},t]dt is minimized for physical ¢,(¢)

L
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Previously we introduced the Lagrangian function without justification.    Here we follow a “derivation”  attributed to d’Alembert.


Digression -- notion of generalized coordinates

Referenced to cartesian coordinates: r(z) = x(¢£)X + y(¢)y + z(¢)z

Cylindrical coordinates x=pcosp=x(p,9)
s y=psing=y(p,P)
z=z
o 0= \/xz + yz
S~ P ¢
] *t( ¢ = arctan(y / x)
A | p“
. : -y z=2z
® > Here we can write

1_,/ r(?) =r(x(), y(2),2(t)) =r(p(t), p(2), z(2))

Figure B.2.4 Cylindrical coordinates

(Figure taken from 8.02 handout from MIT.)
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The derivation is based on the notion of “generalized” coordinates which can be Cartesian coordinates or one of the many transformed coordinates, or even more “general” coordinates.


x:]"SiIl@COS¢Ex(7'999¢)

Spherical coordinates y=rsindsing = y(r,0,9)
z=rcosl=z(r,0,9)

[

. 2 2 2
; r—\/x +y 4z
o ¢ 2 | 2
% 7oy
y Anms 0 = arctan
|
;‘ e -y ¢ = arctan(y / x)
| ¢

| Here we can write

. r(t) =r(x(1), y(t),2(1)) =r(r(),0(2), p(1))

Figure B.3.1 Spherical coordinates

(Figure taken from 8.02 handout from MIT.)
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Another example of transformed coordinates.


D’Alembert’s principle:
%
Note that: ds = dxx+dyy + dzz

Newton's laws :
F-ma=0

Ox
F.Jds= ) haatl
x Z‘Z ’5q05q

For a conservative force:

= (F-ma)-ds =0

F=-9Y

Ox,

Generalized coordinates:

g, ({x}) © x({g,})
Note that

q_(t) can be x(1),0(?)....

OX;
dx=dx; =} ~0q,

O qg

oU ox, oU
o oy g, TR,

9/10/2021
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Here we start the derivation following D’Alembert’s arguments.     xi denotes the cartesian coordinate while q denotes the “generalized” coordinate.    In this slide we consider the potential energy terms.


You might ask why we need “generalized” coordinates. In fact,
Cartesian coordinates are often just fine, but using the more
flexible possibilities reveals important aspects of the formalism.
Cartesian coordinates are a special case of generalized
coordinates.

Comment on notation -- ds = dxX + dyy + dzz

A ra N A

For convenience let x=X,, y=X,, Z=X,

3
Then F-ds= Zdel.

i=l1

But now we want to change coordinates g _ ({x}) < x.({q,}
3

of)
OX,;
dxl.:z 5q0 F -ds= ZFdx —Zl 1E

O qO'

OX,;
oq..

0q..



Summary up to now --

F- a’s—ZZF—ﬁqa

i @qa

oU
For a conservative force: F =———

l Ox,

oU Gx
F.-ds=- — N =
ds ZZax 5y 01 Zﬁqa 54,




] Generalized coordinates:
S

9s ({xl}) X <= X
Newton's laws: Yy,
F-ma=0 = (F-ma)-ds=0
z & X,
ma-ds = Zme —5q
. . d Ox
—ZZ mx, —— |—mx, ——— 0q,_
(dt[ ' 0q._ j " dt oq._
Claim: ox; _ (%.cl. and d ox; 0 dx _ OX,
oq. 0q, dt 0q. o0q_ dt 0q_

. dS—ZZ[ { (: Zx )J_@(éff)]&%
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Continuing the derivations we consider the kinetic energy contributions.


Some details

. Ox, dx oOx, d| . Ox . d Ox,
Xi = = X — X
oq dt oq_ dt\ 0q_ dt 0q_

You may be still wondering why we need to introduce
“generalized” coordinates when cartesian coordinates
are an example. What the generalized coordinates
allow us to show is that

ma~ds=z d (9.T_8T 0q._
dt 0q. Oq

(o o

o)

where 7=) imx’ (kinetic energy)



% X, = xi({qg(t)},t)

Claim: % _ 0%
9, 04,
Details: x, = %q'a +% Therefore: 8).9. _ %
> 04, ot og_  0q.
Claim: L% _ 0 v _ 0%
dt 6q, 0q, dt  0q,
@2)61. . ‘ 52.7(:1. azxi ) azxi
Z 95 + Z 9o +
> 09,04, Otdq, ‘5" 0q,0q_. 0q_0
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Continuing the derivation.


Generalized coordinates:

ds
qa ({xz})
e d 8(% m)'cl.z) B 8(% m)'cl.z)
ma dS—;Z[dtL aq,d j aqo- o)
Define - - kinetic energy: T = 5mxi2
d oI OT
ma-ds = Z( — — j5qa
dt 0 0
Recall: ° % %o %o
oU Gx
F.ds=— = —0
ZZ OX, 8q0 Z@qa 1o

oU d 0T &oT
F_ ds=-S" s Sq_ =0
(F-ma)-ds ~ 0q_ to ™ Zﬁdt 8i. 0q ] 1o
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Summary of results from D’Alembert’s analysis.


.

s Generalized coordinates :
&,

oU d oT oT
Foma)-ds=-SY 54 — _ _
(F-ma)-ds P Z[a’t oG og )5‘]"

(e} qG o

)

o

(d o(T-U) o(T-U)

— 0q, =0
dt 0q, oq

o [d 8L_6L]5%:O

o)

dt 0q, 0Oq

o)

Note: Thisisonly true if

L(qo-aq.o-;t):T_U 8U:0

4,
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Form of derived Lagrangian  provided that the potential does not depend on velocity.


s Generalized coordinates :
&,

Define -- Lagrangian: L=T7T-U

L=L{ig, 14, 1)
oL oL
(F-ma)- ds = _Z[dt 5 8q j@a =0

o

Iy

— Minimization integral : S = I L({g, }1g, }t)dt

=» Hamilton’s principle from the ‘backwards”
application of the Euler-Lagrange equations --

Define -- Lagrangian: L=T-U

L=L({g,}.{4,}-t)


Presenter
Presentation Notes
Having shown that the Euler-Lagrangian equations are consistent with Newton’s equations of motion, we can then infer that the integral of the Lagrangian is optimized as is consistent with Hamilton’s principle.    


Euler — Lagrange equations: L = L({qo }, {q’a }, t) =T7-U
d oL 0L
dt 0q, 0Oq

=0

o)

Example:

L=1(0,0)=1md*6’ —mg(d —d cosb)

d 5.L _ oL —0 :imdzéergdsiné’:O
dt 0q_ 0Oq t

2
d (29 = —gsiné’
dt d
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Example of using the Lagrangian formalism for a simple pendulum.


Anotherexample: L=L({g_}{g. }t)=T-U
d oL OL

_ -0
dt 6g_  0q

(o}

L=L(a,B,7,a,p, y)=31 (a sin ,B+,B) (acosﬁ+7/) — Mgd cos [

;Zt gi Zt(lasm B+, (acos,B+7/)cos,B)

doL _d;, . oL
dt of8 dr([ﬁ)zﬁ

d oL d . .
457 = ([3(acos,8+7/)) =0
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Another example of Lagrangian formalism that we will encounter when we examine rigid body motion.


o Example — simple harmonic oscillator
T =Lmx’ U =Limw’x’
/o
Assume x(0)=0 and x(Z£)=0 S:%mf(xz—cozxz)dt

0

Trial functions x,(¢) = Asin(ot) S, =0
X, ()= Aowt - (7 — wt) S, =0.067 A’maw’
X, (1) = Ae " sin (ot ) S, =0.062A4°mw’
2 1
1.5
X
1
0.5 X,
0
0 0.2 04 0.6 0.8
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Harmonic oscillator example.     Here we again demonstrate the physical trajectory has the smallest “action”.


D
Summary —

Hamilton’s principle:
Given the Lagrangian function: L = L({% b4d, ) ,t) =T -U,
The physical trajectories of the generalized coordinates {qg (t)}
are those which minimize the action: S = j L({q,}.{d,}.t)ds
Euler-Lagrange equations:

d oL OL d oL OL
Z — g.=0 —=foreach o: — — —()
>\ dt aqa aq dt aqa 8q

o o
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Recipe for Lagrangian mechanics.


.

Note: in “proof” of Hamilton’s principle:

d oL OL
— =0 A L=1L . —T_U
Ldt 0q, oq, ] of (19, )14, 1)
It was necessary to assume that :
d oU

——— does not contribute to the result.
dt 0q_

— How can we represent velocity -dependent forces?

Why do we need velocity dependent forces?

a. Friction is sometimes represented as a velocity
dependent force. (difficult to treat with Lagrangian
mechanics.)

b. Lorentz force on a moving charged particle in the
presence of a magnetic field.
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Important restriction.


.

Lorentz forces:
For particle of charge g in an electric field E(r, ) and magnetic field B(r,?) :

Lorentz force: F = q(E +Lvx B)

X —component: F = C](Ex +1(vx B)x)
In this case, it 1S convenient to use cartesian coordinates
L=L(x,y,z,%,9,zt)=T-U

Note: Here we are using

1 ) ) ) _ _
I'= 2m(x ty tz ) cartesian coordinates for

d OL OL convenience.
x-component: —— =0
(dt Ox 8xj
oU d oU
Apparently: F =-— +
PP Ty T o
Answer: U=q®d(r,t) qi‘-A(r,t)

c
l@A(r,t)

where E(r,)=-V®(r,t)- Py
c

B(r,t)=VxA(r,t)
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While Lagrangian mechanics cannot treat all velocity dependent forces,    it is possible to extend the analysis for the case of  the Lorentz force.     This material is treated in Chapter 6, Section 33 of your textbook.      We are following the textbook’s units of cgs Gaussian units.  We will discuss this material on Monday.
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