PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Discussion of Lecture 10 — Chap. 3&6 in F&W

Lagrangian mechanics

1. Lagrange’s equations in the presence of velocity
dependent potentials — such as electromagnetic
interactions.

2. Effects of constraints
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Presenter Notes
Presentation Notes
This material follows your textbook in both Chapter 3 and Chapter 6.


Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Reading Topic Assignment Due
1 |Mon, 8/22/2022 Introduction #1 8/26/2022
2 |Wed, 8/24/2022|Chap. 1 Scattering theory
3 [Fri, 8/26/2022 |Chap. 1 Scattering theory #2 8/29/2022
4 |Mon, 8/29/2022 |Chap. 1 Scattering theory #3 8/31/2022
5 Wed, 8/31/2022 Chap. 1 Summary of scattering theory |#4 9/02/2022
6 [Fri, 9/02/2022 |Chap. 2 Non-inertial coordinate systems #5 9/05/2022
7 |Mon, 9/05/2022 |Chap. 3 Calculus of Variation #6 9/7/2022
8 |Wed, 9/07/2022 |Chap. 3 Calculus of Variation 74 9/9/2022
9 |Fri, 9/09/2022 |Chap.3 & 6 |Lagrangian Mechanics
10 Mon, 9/12/2022 Chap. 3 & 6 |Lagrangian Mechanics #8 9/14/2022
11 \Wed, 9/14/2022 |Chap. 3 & 6  |Constants of the motion
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Presenter Notes
Presentation Notes
Here is the updated schedule.   Note that HW 7 which will be covered in today’s lecture will be due on Friday.


PHY 711 — Assignment #8
September 12, 2022

The material for this exercise is covered in the lecture notes and in Chapters 3 and 6 of Fetter
and Walecka.

1. A particle of mass m and charge ¢ is subjected to a vector potential A(r,t) = —(Eyct + Byr)z.
(Note that we are using the cgs Gaussian units of your text book.) Here Ejy denotes a constant
electric field amplitude and B, denotes a constant magnetic field amplitude. The initial
particle position is r(0) = 0 and the initial particle velocity is r(0) = 0.

(a) Determine the Lagrangian L(x,y, z, @, ¥, Z,t) which describes the particle’s motion.
(b) Write the Euler-Lagrange equations for this system.

(c

)
(d) Find the particle trajectories x(t), y(t), z(¢) by solving the equations and imposing the
given initial conditions.

Find and evaluate the constants of motion for this system.

(e) Determine the Hamiltonian for this system and evaluate dH /dt.
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Presentation Notes
Homework problem due on Wednesday..


Previously derived form for the Lagrangian --

s Generalized coordinates :
. e

oU d oI oT
F-ma)-ds=-» —030q_— ———19g. =0
( ma) S qO’ Z(Cllt aq'a aqaj qU

do(T-U) o(T-U) -
- _Z(dt oi, g )5%_

d oL OL
= D=4, =
>\ dtodq_  Oq

Note: Thisisonly true if

(e} qG o



Presenter Notes
Presentation Notes
Form of derived Lagrangian  provided that the potential does not depend on velocity.


s Generalized coordinates :
. e

Define -- Lagrangian: L=T-U

L=L(ig, {4, 1)
d oL OL
-ma = _Z[dt g aqa j@a =0

— Minimization integral : § = J‘ L({g, },4d. )t

=>»Hamilton’s principle from the ‘backwards”
application of the Euler-Lagrange equations to

Define -- Lagrangian: L=T7T-U

L=L1({g,}:{4,})


Presenter Notes
Presentation Notes
Having shown that the Euler-Lagrangian equations are consistent with Newton’s equations of motion, we can then infer that the integral of the Lagrangian is optimized as is consistent with Hamilton’s principle.    


.
Summary —

Hamilton’s principle:
Given the Lagrangian function: L =1L ({% } : {q’a },t) =T-U,
The physical trajectories of the generalized coordinates {qa (t)}
are those which minimize the action: S = I L({q,}.{d,}.t)dt
Euler-Lagrange equations:

d 0L OL d oL OL
Z —— q.=0 —=foreacho: — — -0
>\ dt aqa aq dt @q - @q

d c
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Presentation Notes
Recipe for Lagrangian mechanics.


.

Note: in “proof” of Hamilton'’s principle:

d OL OL
— =( fi L =1L . _T_U
[ dt aqg an j or ({QG }9 {qg }, t)
It was necessary to assume that :
dau

— does not contribute to the result.
dt 0q_

— How can we represent velocity -dependent forces?

Why do we need velocity dependent forces?

a. Friction is sometimes represented as a velocity
dependent force. (difficult to treat with Lagrangian
mechanics.)

b. Lorentz force on a moving charged particle in the
presence of a magnetic field.


Presenter Notes
Presentation Notes
Important restriction.


Lorentz forces:
For particle of charge g in an electric field E(r, ¢) and magnetic field B(r,?) :

Lorentz force: F = q(E +Lvx B)

X —component: F. = Q(Ex +1(vx B)x)
In this case, it 1S convenient to use cartesian coordinates
L= L(x,y,z,)'c,j/,z',t) =7-U
Note: Here we are using

(w2 w2 22 _ .
T‘zm(x Ty tz ) cartesian coordinates for

d OL OL convenience.
x-component: —— =
(dt o 8xj
oU d oU
Apparently: F =-— +
PP e Ty T ax
Answer: U :qq)(r,t)—zi'-A(r,t)
C
1 0A(r,1)

where E(r,t)=-V®(r,¢)

P B(r,t)=VxA(r,t)


Presenter Notes
Presentation Notes
While Lagrangian mechanics cannot treat all velocity dependent forces,    it is possible to extend the analysis for the case of  the Lorentz force.     This material is treated in Chapter 6, Section 33 of your textbook.      We are following the textbook’s units of cgs Gaussian units.


Units for electromagnetic fields and forces

cgs Gaussian units -- (as used your textbook)

E and B fields as related to vector and scalar potentials:
1 0A(r,1)

c Ot
Corresponding Lagrangian potential:

E(r,t)=-V®(r,t)- B(r,t)=VxA(r,¢)

i A(r,1)

U=q®(r,t)-=
c

Sl units --

E and B fields as related to vector and scalar potentials:
OA (r,1)

ot
Corresponding Lagrangian potential:
U=q®(r,t)—qr-A(r,z)
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E(r,t)=-V®(r,1)- B(r,/)=VxA(r,t¢)



.

Lorentz forces, continued:

x —component of Lorentz force: F. =¢ (Ex + (V X B)x )

Suppose: U = q(l)(r,t)—gi'-A(r,t)

c
Consider: F_ = _Y + d oY
Ox dt Ox

~ou _ od(r,?) q[.@Ax(r,t) .5Ay(l‘>f)

. 04, (r,t)j

— == +—=| x + +
ox 1 ox c ox Y ox ox
8_Q = —gAx(r,t)
OX C
ia_q __qdA(rz)_ _1(8Ax(r,t)),C+ éAx(r,t)er an(1~,¢)2.+ 0A4_(r,1)
dt Ox c dt c ox oy 0z ot


Presenter Notes
Presentation Notes
Very clever mathematicians figured out how to incorporate Lorentz  into the Lagrangian formalism.    Here we are assuming their result and showing that it is consistent.


S
Lorentz forces, continued:

0A (r,¢ A
U__, 6(I)(r,t)+g . an(r,t)+y, r )+Z, 04, (r,¢)
ox Ox c ox ox ox )
S
dou _ ¢ GAx(r,t)).H an(r,z)y.+ 8Ax(r,t)z,+ 0A4_(r,¢)
dt Ox c Ox oy 0z ot )
F o= oU d oU
Ox dt ox
_ od(r, 1) L9 0A, (r.1) 0A4_(r,1) L9 0A4_(r,1) 04, (r,z) _q 04, (r,z)
1 Ox c Y Ox oy c Ox oy c Ot
__00(r,t) g d4,(r,2) 4 04,(r,t) 04 (r,t) N Z,( 04,(r,t) 04, (r,t)j
1 Ox c Ot c Y Ox oy c Ox Oz
=qk (r,t)+ k4 (y'BZ (r,t)— zB, (r,t))— qL (r,t)+ g(v X B(r,t))x


Presenter Notes
Presentation Notes
More derivations.



®
Some details on last step:

r :_8U+ d oU
' Ox dt Ox
6(I)(r,t)+q (04, (r,t) 04, (r,t) Ky 04, (r,t) A (r,t)) g 04, (r1)
= — = — -7z — L
1 ox cy ox oy c ox oy c Ot
oD(r,t) ¢ 6Ax(r,t)+q (04, (r,t) 04, (r,¢) Ny 04, (r,t) 04, (r,?)
-7 - - ‘.= — -7z —
1 Ox c Ot cy Ox oy c ox 0z
Note that: E(r,t)=-VO(r,t) 1 8A§:’t) B(r,r)=VxA(r,r¢)
C
So that:
F.(r.t) =qE, (r,0)+L(3B (r,1)-zB,(r.1)) = ¢E, (r,t) + L(vxB(r,1))
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Presenter Notes
Presentation Notes
More derivations.



S
Lorentz forces, continued:

Summary of results (using cartesian coordinates)
L = L(x,y,z,)'c,j/,z',t) =7-U

T=im(i+y*+2)  U=q0(r,t)-Li A(r,)
C
where E(r,t)z—VCD(r,t)—laAg’t) B(r,t)=VxA(r,z)
C
q .


Presenter Notes
Presentation Notes
Summary of results.


®
Example Lorentz force

L=1m(i+7 +2°)-q0(r,6)+ Li- Alr,z)
c

Suppose E(r,1)=0, B(r,t)= B,z

A(r,t) =L B,(~ yX + x¥)

L:%m(x2+)>2+Z'2)+2iBO(—5cy+j/x)

c

d 8L._6L =0 :i(mic—iBoyj—iBoy=0
dt ox Ox dt 2c 2c

4 0L oL _y :i(my'+130xj+i30x=o
dt oy Oy dt 2c 2c

d oL OL d

=0 ——mz=0
dt 0z 0Oz dt



Presenter Notes
Presentation Notes
Example for a  magnetic field in the z direction.


Example Lorentz force -- continued

LB (— sy +jx)

%(x+y—|—z) >

L=
d m)'c—iBOy = —B,y=0 :>mx—1Boy':O
dt 2¢C 2c c

ﬂw@+13ﬂ + L Bi=0 =mp+lBi=0
dt 2c 2c C

imz':O —=>mz=0
dt


Presenter Notes
Presentation Notes
Finding the Euler-Lagrange equations.


Example Lorentz force -- continued

L=1m(# +5 +z‘2)+2iBO(—5cy+y'x)
C
mi=+1B
C
mj}:—gBofc
C
mz =0

Note that same equations are obtained

from direct application of Newton's laws :

mr zil‘xBoi

C


Presenter Notes
Presentation Notes
Summary from previous slides.


®
Example Lorentz force -- continued

Evaluation of equations:

q

mx =By =0 x(1)= Vsm( t+¢)
my+130x:0 y(t)zl/()cos(%t+¢)
C



Presenter Notes
Presentation Notes
We get the same motion for this case.


®
Example Lorentz force -- continued

Consider formulation with different Gauge: A (r)=-B,yx
L=5m (x +y°+z )—QBOXy
c
i(mic—gb’oyj—o :mx—gBO)'/:O
dt c C
D (mp)+ 2B =0 —mp+LB5=0
dt c C
imz’ =0 —>mz =0
dt

Does it surprise you that the same equations of motion are
obtained with a different Gauge?


Presenter Notes
Presentation Notes
This is the same magnetic field, but an equivalent vector potential.


How do these two different forms of A correspond to the
same B?

B(r,t)=VxA(r,t¢)
Consider A'(r,t) =A(r,t)+V/f(r,¢)
Note that VxA(r,t)=VxA'(r,¢)

1 A
In our case, A(r, t)=§BO (—yX+xy)

A'(r,t)=—B,yx
What is f (r,?)?



S
Now consider formulation of motion with constraints --

Comments on generalized coordinates:

L=L({g, Oh{4, O}ht)
d oL oL
dt 0g_ 0q

=0

Here we have assumed that the generalized coordinates
q, areindependent. Now consider the possibility that
the coordinates are related through constraint equations

of the form:
Lagrangian: L= L({qg (z)}, {q'g (;)}, t) hqaugfaarl}gfs
Constraints: f, = f, (lg.(O}1)=0 lp
of _

0

: . L L
Modified Euler - Lagrange equations : d oL _ Q2 + Z A
j

dr 84, 4, oq

(o}


Presenter Notes
Presentation Notes
Shifting topics, we now consider examples where the generalized coordinates are related by some constraints.


Simple example:

L(u(t),u(t)) =L mi* + mgusin 0

. L(x,p.%,3) =tm(&* + 37 )- mgy
f(x,y)=sinf x+cosf y=0
Note that: u =xcos@ — ysiné
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Presenter Notes
Presentation Notes
Here is a simple example of an inclined plane.    If we were so silly as to treat the x and y motions separately, we would have use a constraint equation as shown.


Case 1:
L(u(t),u(t)) =L mu* + mgusin 6

d aL—aL:O:rmLi—mgsinQ:O
dt ou Oou
Case 2:

1

L(x,y,%,9) =+m(& + 37 ) - mgy
f(x,y)=smnf x+cosf y=0

d@L_@L 8f =0=mx+ Asin@
dt Ox Ox 8x
d@L_@L 6f

=0=my+mg+ Acosb
dt 0y Oy 8y y+mg

sinf x+cosf y=0

= A =—mg cos § {E—

(cos@ i —sinf j) = gsinf
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=i =gsinf

Which method would
you use to solve the
problem?

Case 1

Case 2

Force of constraint;
normal to incline

22


Presenter Notes
Presentation Notes
In this case we see that the constraint is related to the normal force which can be considered as a force of constraint.


Rational for Lagrange multipliers

Recall Hamilton's principle:

S = jL({qg(t)},{qa(t)},z)dt

f d oL oL
55 =0= j > - g |dt
\T\dtdq, 0q,

With constraints:  f, = f| ({% ()}, t) =0

Variations oq_ are no longer independent.

of
5;3:0:2%5% at each ¢

o)

— Add 0 to Euler-Lagrange equations in the form:

of .
>4, Y g,
J o qa


Presenter Notes
Presentation Notes
Here we  justify the use of Lagrange multipliers in a similar way that we used them when discussing the calculus of variation.


Euler-Lagrange equations with constraints:

Lagrangian: L = L({qa (1) }, {q’a (1), t)
Constraints: f, = f. ({qa (t)}, t) =0

Modified Euler - Lagrange equations : d 6.L _ oL + Z =
dt aQO‘ 6QO‘ J GQO'
Example:

Lagrangian: L = %m( 2 4 r20? )+ mgr cos
Constraints: f =r—£=0

mg
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Presentation Notes
Another example of constrained motion.


Example continued:

Lagrangian: L = m('2+r26’2)+mgrcosﬁ

L
2

Constraints: f =r—£=0

im#—mréz —mgcosfd+A1=0
dt

d e .

—mr 60+ mgrsinf =0

dt

r=0=r r=>4
— =—%sin¢9

— A=mlO*+mgcosh


Presenter Notes
Presentation Notes
Continued analysis of pendulum motion


Another example:
s “iZ  Lagrangian: L :%ml'ff +%m2'@ +m,gl, +m,gl,
Constraints: f=/¢,+/(,—(=0

d .
—ml, —mo+A=0
£ g 18
' .y A1=0
—ml,—mg+ A=
LR 28
thl!.lﬂtwnnd':mlchint.gl_l_gz:O:€1+€2
:>/1:2m1m2g
m, +m,
ZI:—'@zzml_ng
m, +m,
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Presenter Notes
Presentation Notes
Example of Atwood’s machine with two masses and a pulley.
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