PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Discussion of Lecture 13 — Chap. 3&6 (F&W)
1. Phase space
2. Liouville theorem

3. Examples


Presenter Notes
Presentation Notes
In this lecture we will introduce the notion of phase space, prove an important theorem concerning the density of particles in phase space, and show some interesting examples.      The slides at the end are included only for those of you who may be interested in statistical mechanics.      
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PHY 711 — Assignment #10

September 19, 2022

1. This problem uses a simplification of the ideas of Nosé. Consider a Lagrangian describing one
dimensional motion of a particle of mass m in a mechanical potential V' (z) with an addition
time dependent function s(f) and extra constants () and K having the form

1
L(x,&,s,8) = Eir:f:r..sz:;b2 —V(x) +Qs* — K1n(s).

(a) Write down the the Euler-Lagrange equations for this system. (It is not necessary to
solve them.)

(b) Assuming that the time average of § =0 ((§) = 0), show that the average kinetic energy
of the system is proportional to the constant K.

(¢) Find the Hamiltonian for this system in canonical form H (x, p., s, ps).
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With the Hamiltonian formalism comes the notion
of phase space --

H=H({g, O} {p, 0O}1)

44, _ oH — constant ¢q_ 1f o _ 0
dt Op, op.,
dp, _ _OH —> constant p_ ifa—H: 0
dt oq .. oq ..
dH OH . OH . oH

— _ 4 4
dr (,(aqaq" op p"} ot

(o}

Similarly for an arbitrary function: F=F ({qa (t)}, { D. (t)}, t)

dF oF . OF . OF oF oH oOF OH | oF
—=>|—G,+—p, |[+—= - +—
oq,, op,, oo “T\oq,6 op, Op, Oq, ) Ot
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Now an interesting addition property of the Hamiltonian formulation.


For an arbitrary function: F =F ({qg 0}.{p, (1)} ,t)

oF oF . oF oH OF OoH | OF
T A ) !
= op., oq_, Op, 8p0 oq . ot

Short and notation -- Poisson brackets

oF oG OoF 0G
FG| = — =—|G,F
[ ]PB Z[aqa apa apa aqaj [ ]PB
dF

So that: =|F, H] +8—F
dt ot
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Introducing the Poisson Bracket.


Poisson brackets -- continued:

oF oG OF 0G
FGl,, = — =—|G,F
Fal, =3[ 22050 [gr),

(o}

Examples:
[x’x]PB =0 [‘x’px ]PB =1 [x,py ]pB =0
L] =L,

Liouville theorem

Let D =density of particles in phase space :

ab _ D.H],, +9P o In the following slides we will

dt ot justify this statement using
several approaches.
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Examples followed by introducing the Liouville theorem.


.

Phase space

Phase space is defined at the set of all

coordinates and momenta of a system:

For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.

The notion of density of particles in phase space is
simply the ratio of the number of particles per unit phase
space volume. It seems reasonable that under
conditions where there are no sources or sinks for the
particles, that the density should remain constant in
time.
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Notion of phase space



Phase space diagram for one-dimensional motion due to
constant force

p
& p2 | : x | | :
Hip)=Lofr per,  i=L
m m
. |
p.(t)=p,. + Ft xi(t)=x0i+l;2’t+—E)t2

2
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Example of time evolution of phase space.


Phase space diagram for one-dimensional motion due to
spring force

1.3

P

1_

V

T T T T T T T T T T T T T T T T T T T
-04 -02 0 02 04 0.6 0.8 X 1 12 14

2
|
H()c,p)=p—+—ma)2x2 p:—ma)zx X =

P
2m 2 m

Po sin (et +6,,)

p:(t) = p,, COS((()Z‘-I-@OZ.) x,(t) =
ma
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Another example of time evolution of phase space.


B
Liouville’s Theorem (1838)

The density of representative
points in phase space
corresponding to the motion of a
system of particles remains
constant during the motion.

Joseph Liouville

lived from 1809 to 1882

Denote the density of particles in phase space: D = D({qa (t)}, { D, (t)}, t)

dD oD . oD . oD
- = - qo_ _|_ - po_ + -
dt T\ oq, op.. Ot
: L dD
According to Liouville's theorem: — =0

dt
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Application to the density of phase space – Liouville theorm.


.

Liouville’s theorem

P X

—>

A 1
(X,p*+A4p)

(x+4x,p+A4p)
oD
Ot —>
(x,0) pI (x+4x,p)
>

9/19/2022
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Diagram of flow in phase space.


Liouville’s theorem -- continued I
A

(x,p+A4p) (x+Ax,p+A4p)

p X oD

(x,P) pI (x+4x,p)

>
oD . X . .y
= = time rate of change of particles within volume
[
= time rate of particle entering minus particles leaving
oD . oD .
= —X — —p

Ox op
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Some details.


Liouville’s theorem -- continued I
A

(x,p+A4p) (x+Ax,p+A4p)

p X oD

(x,P) pI (x+4x,p)

>
X
oD oD . oD .
A Ty
ot ox op
oD oD . oD . _dD
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More details.


Review:
Liouville’s theorem:

Imagine a collection of particles obeying the
Canonical equations of motion in phase space.

Let D denote the "distribution" of particles in phase space :

D = D({% "'%N}’ {pl '"p3N}’t)

Liouville's theorm shows that :
D . o

a;T =0 —> D 1s constant 1n time
A

Note that we are assuming that no particles are
created or destroyed in these processes.
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Summary of Liouville theorem.


Another proof of Liouville’s theorem:

=

Continuity equation :
oD

s — -V -(vD)
vp

-

4

Note :1n this case, the velocity 1s the 6 N dimensional vector :
v =(F,Fy,... 0P Pase - Py)

We also have a 6 N dimensional gradient :
V=(V,,V,,.V, V..V, .V )

Vo
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Another more formal derivation of Liouville
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More details.


| oD
8_Dq'j +$j

q;+

oq ;

qu

P

| oD
D . o

| oD
a—D'*a

P

P
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Derivation  of Liouville theorem


dD
dt
Importance of Liouville’s theorem to statistical
mechanical analysis:

0

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
In phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume. Computationally this can be
approximated using molecular dynamics or
sampling methods.
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Comment.


®
Modern usage of Lagrangian and Hamiltonian formalisms

J. Chem. Physics 72 2384-2393 (1980)

Molecular dynamics simulations at constant pressure and/or
temperature®

Hans C. Andersen

Department of Chemistry, Stanford University, Stanford, California 94305
(Received 10 July 1979; accepted 31 October 1979

In the molecular dynamics simolation method for fluids, the equations of mation for a cullection of
particles in a fixed volume are solved numerically. The energy, volume, and number of particles are
constanl for a particular simulation, and it is assumed that Lime averages of properties of the simulated
fluid are equal to microcanonical ensemble avernges of the same properties. In some situalions. it is
desirable to perform simulations of a flwd for particular values of temperature and/or pressure ot under
conditions in which the energy and volume of the fluid can fluctuate. This paper proposes and discusses
three methods for performing molecular dynamics simulations under conditions of constant temperature
and/or pressure, rather than constant encrgy and volume. For these three methods, it is shown that time
averages of properties of the simulated fluid are equal 10 averages over the iscenlhalpic—isobaric,
canonical, and isorhermal-isobaric ensembles. Each method is a way of describing the dynamics of 2
certain number of particles in a volume element of a fluid while taking into account the influence of
surrounding paricles in changing the energy and/or density of the simulated volume element. The
influence of the surroundings is taken into account without introducing unwanted surface effects.
Examples of siuations where these methods may be useful are discussed.
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This paper shows an example of Lagrangian and Hamiltonian mechanics use to make realistic simulations of real materials.


“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. ldeally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates {qo, (t)} represent
N atoms, each with 3 spacial coordinates:
L=L({q,(0}.14,0)}.,t)=T~U

For simplicity, it 1s assumed that the potential interaction

is a sum of pairwise interactions:

Uie") = 2 ulr, )} . (2. 1)

<4
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Brief introduction to the approach of H. C. Andersen


r.

2—2uQri—rj‘)

L=L{{rO}L 0] =D tmi

i i<j

=»From this Lagrangian, can find the 3N coupled
2nd order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).
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Schematic drawing of system modeled.


.

Lagrangian and Hamiltonian forms
L=L({r 0} {50}) = 2 m i - 2w )
] i<j
Euler-Lagrange equations:
d2

| d;i - _Z”'(“?‘ ‘rf‘)

m.
<j ‘rl _r]‘

I, —l’j

Hamiltonian formulation:

p;, = m}r,
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Lagrangian and Hamiltonian of particle system.


.

Digression on numerical evaluation of differential equations
Example differential equation (one dimension);

2
dx—f(t) Let t=nh (n=12,3..)

dr*
x,=x(nh); f = f(nh)

Euler's method :

1
X . =X +hv +§h2fn

Vn+1 — Vn + hf;a X

Velocity Verlet algorithm :

1
X, . =X +hv +§h2fn

1
Vn+1 :Vn +§h(fn +fn+1)
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The equations cannot generally be solved analystically so that numerical methods must be used.    This slide shows some of the ideas for numerical devaluations.


H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (P).

g

f

P constant,
V variable

V constant
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Back to the ideas of H. C. Andersen.


.

Andersen's clever transformation :
Letp, =r, /0"

L=L{{r,OL 0= tmi

r.

l i<j

L

I

9/19/2022

L(lp, 0} {6,(0}.0.0)= 0** Y 4m
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PV contribution to
potential energy

r,—r))

y J

: _ZM(Q1/3‘pi _pj‘)_i_

i<j

P; HMQ.2 —O(Q

kinetic energy of
“balloon”

25
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Andersen’s approach of “extending the Lagrangian to include pressure effects.


~ 0

- zz,,‘;u >ulo -0 ) 1

= L, 0} 5,01.0.0)= 0 Y tmfp [~ > ul0"lp, |} 1MO* - a0

i< ]

<)
dp, __m, dg _ 11
dt  mQ*” dt M
dl A3 U3l o P —P,;
df 0 Zu (Q ‘p pJD‘p__pj‘
Jf ZZJ:Q|2/3 307" ZJ: (QIB‘PI-_PJ-D‘pi_Pj‘_a
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Some details.


Relationship between system representations

Scaled Original
o) = 40
Q1/3pi(t) — ri(t)
T, /Q1/3 — P;
Equations of motion in “original” coordinates:

dr, p, +lr dInV

d m 3 dt

@ B r,' _rj | B _l dan

dt ; r rj‘u ql‘,- rj‘) 3P
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More details.


®
Physical interpretation:

a < Imposed (target) pressure

[ Zp___Z‘r —r. }M (‘1} —rj‘)) <> Internal pressure of system

]<z

Time dependence

dzz/ =—a+—( L r, —rj‘)j
395

dr o

Averaged over many time steps.

d’v 1{2<p,p, |1 ,
u i) = a=<;(;z%—;;\n—w<\ri—rj\>]>
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Here alpha represents the controlling pressure.


Example simulation for NPT molecular dynamics
simulation of Li,O using 1500 atoms with =0
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Pair interaction potential
ry=d e S, B9,
7 Yy 6
Vi Vi

Use LAMMPS code
http://LAMMPS.sandia.gov

29
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An illustration of  simulation for a particular system.

http://lammps.sandia.gov/

[:] 15
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Plot of volume and pressure variation for a particular simulation.


MoLECULAR PHyYsICcs, 1984, VoL. 52, No. 2, 255-268

A molecular dynamics method for simulations in the
| canonical ensemblet

by SHOICHI NOSE?

Division of Chemistry, National Research Council Canada,
Ottawa, Ontario, Canada K1A 0R6

(Received 3 October 1983 ; accepted 28 November 1983)

A molecular dynamics simulation method which can generate configura-
tions belonging to the canonical (T, V, N) ensemble or the constant
temperature constant pressure (7, P, N) ensemble, is proposed. The
physical system of interest consists of N particles (f degrees of freedom), to
which an external, macroscopic variable and its conjugate momentum are
added. This device allows the total energy of the physical system to
fluctu?te: .'.I‘hf.: equilibrium distribution of the energy coincides with the
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Another famous paper controlling the temperature rather than the pressure.


Nose”'s Lagrangian:

L({r ), (1.5) :%Zml.szl‘f +%ka'~2 ~g({r )~ (f + DAT, Ins

3

fictitious mass

velocity scaling

Equations of motion:
E (misz ‘-1'. NIl —Eé!
dt or;
ALl 1 895_25"_...
ms2or, s °

Q§= Z mis'-.is_(f'l' l)kTeq.
. §
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Nose’’s    idea to control the temperature using an “extended” Lagrangian.


Time averaged relationships

05 = Z:ml.si'i2 — (/ + D,
,- 0y
10 =) { 2
,- Ky

EE
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Showing how the scale factor s behaves on averate.


Time averaged relationships

< - mfa IF"2> A l)kTeq<ls>

Hamiltonian

i zmis2

#,=y P +¢(r)+—?£+(f+1)kTeq Ins,

20

2 .
where p, =ms°r,
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More details.


B

In statistical mechanics, the thermodynamic functions can be analyzed
in terms of a partition function. A canonical partition function for a system

with N particles at a temperature 7, can be determined from the phase space

integral:
Z, = L d>N7 dle_? e—m{ﬁ},{@})/knq
N!
—2
where Z((T}.(p,}) =Y. -+ ¢((T )

T 2m,

For such a canonical distribution the average value of a quantity F({T},{p,})

is given by

(FAT}.(.)), = 7N L [@F @ p e TR p (L (B,

Nose’ was able to show that his effective Hamiltonian
well approximates such a canonical distribution.
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Presentation Notes
Some references to the related statistical mechanics developments.


Relationship between Nose”s partition function and
the canonical partition function:

1 [ 220\
Z=5T ( ; Tﬂq) exp (E/kToq) Ze.

S

constant factor

Some details:
Starting with partition for microcanonical ensemble:

Z--——]'dpsj'dsjdpj'dr (22m5*+¢(r}+

o+ (+ AT In s— E)
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More statistical mechanics.


B
Z-—-—Hmdsfdpwr (E 5+ 8(r) +55 Q+(f+1)kT¢qlm E)

Change variables: p, =

w|:_5

O(s —s,)
[8'(s0) |

Note that [ ds 5(g(s))=| ds

2
where (f + KT, Ins, =E—§é— i 2"};‘1 -4({%})

b NP =
(f +DiT,,

S, = €Xp
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Details.


When the dust clears --

1 [ 220\
Z=5T ( ; Tﬂq) exp (E/kToq) Ze.

S

constant factor

=>» The Nose’ ensemble should sample phase
space in the same way as does the canonical
ensemble at T
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More details.


.

From LAMMPS simulation (using modified Nose’ algorithm)

T(K)

9/19/2022

330
325
320
315
310
305
300
295
280
285
280

275

T T
'2.dat'u 2:3 ——

100
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How does this really work?        We see that the approach allows fluctuations in the temperature, but the average is apparently controlled.
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