

PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Discussion on Lecture 17: Chap. 4 (F&W)

Normal Mode Analysis

- 1. Normal modes for finite 2 and 3 dimensional systems
- 2. Normal modes for extended systems

Opportunities for Physics Research Part IV Theoretical/Computational Biophysics and Gravitational Physics

Featuring the groups of Fred Salsbury and Sam Cho, Greg Cook, Paul Anderson, and Eric Carlson

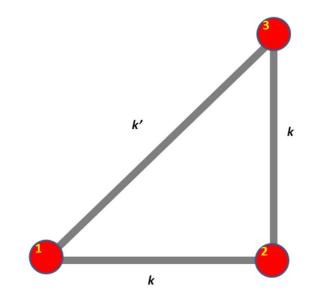
September 29, F2022 at 4ctRM 7 in Olin 101

12	Fri, 9/16/2022	Chap. 3 <mark>&</mark> 6	Hamiltonian equations of motion		
13	Mon, 9/19/2022	Chap. 3 <mark>&</mark> 6	Liouville theorm	<u>#10</u>	9/21/2022
14	Wed, 9/21/2022	Chap. 3 <mark>&</mark> 6	Canonical transformations	<u>#11</u>	9/23/2022
15	Fri, 9/23/2022	Chap. 4	Small oscillations about equilibrium	<u>#12</u>	9/26/2022
16	Mon, 9/26/2022	Chap. 4	Normal modes of vibration	<u>#13</u>	9/28/2022
17	Wed, 9/28/2022	Chap. 4	Normal modes of more complicated systems	<u>#14</u>	10/03/2022
18	Fri, 9/30/2022	Chap. 7	Motion of strings		
19	Mon, 10/03/2022	Chap. 7	Sturm-Liouville equations		
20	Wed, 10/05/2022	Chap. 7	Sturm-Liouville equations		
21	Fri, 10/07/2022	Chap. 1-4,6-7	Review		
	Mon, 10/10/2022	No class	Take home exam		
	Wed, 10/12/2022	No class	Take home exam		
	Fri, 10/14/2022	No class	Fall break		
22	Mon, 10/17/2022	Chap. 7	Class resumes		

PHY 711 -- Assignment #14

Sept. 28, 2022

Finish reading Chapter 4 in Fetter & Walecka.



1. Consider the system of 3 masses ($m_1=m_2=m_3=m$) shown attached by elastic forces in the right triangular configuration (with angles 45, 90, 45 deg) shown above with spring constants *k* and *k'*. Find the normal modes of small oscillations for this system. For numerical evaluation, you may assume that k=k'.

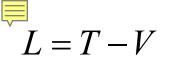
Recap from previous lecture --

Consider an infinite system of masses and springs now with two kinds of masses:

$$x_{i} \qquad y_{i} \qquad x_{i+1} \qquad y_{i+1} \qquad x_{i+2}$$

Note: each mass coordinate is measured relative to its equilibrium position $x_i^0 \equiv 0, y_i^0 \equiv 0, \cdots$ L = T - V

$$=\frac{1}{2}m\sum_{i=0}^{\infty}\dot{x}_{i}^{2}+\frac{1}{2}M\sum_{i=0}^{\infty}\dot{y}_{i}^{2}-\frac{1}{2}k\sum_{i=0}^{\infty}\left(x_{i+1}-y_{i}\right)^{2}-\frac{1}{2}k\sum_{i=0}^{\infty}\left(y_{i}-x_{i}\right)^{2}$$



$$=\frac{1}{2}m\sum_{i=0}^{\infty}\dot{x}_{i}^{2}+\frac{1}{2}M\sum_{i=0}^{\infty}\dot{y}_{i}^{2}-\frac{1}{2}k\sum_{i=0}^{\infty}\left(x_{i+1}-y_{i}\right)^{2}-\frac{1}{2}k\sum_{i=0}^{\infty}\left(y_{i}-x_{i}\right)^{2}$$

Euler - Lagrange equations :

$$m\ddot{x}_{j} = k(y_{j-1} - 2x_{j} + y_{j})$$

$$M\dot{y}_{j} = k(x_{j} - 2y_{j} + x_{j+1})$$

 $x_{j}(t) = Ae^{-i\omega t + i2qaj}$ $y_{j}(t) = Be^{-i\omega t + i2qaj}$

Trial solution :

Does this form seem reasonable?

$$\begin{pmatrix} m\omega^2 - 2k & k\left(e^{-i2qa} + 1\right) \\ k\left(e^{i2qa} + 1\right) & M\omega^2 - 2k \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = 0$$

Comment on notation --

$$x_{i} \qquad y_{i} \qquad x_{i+1} \qquad y_{i+1} \qquad x_{i+2}$$

Trial solution:

$$x_{j}(t) = Ae^{-i\omega t + i2qaj}$$
$$y_{j}(t) = Be^{-i\omega t + i2qaj}$$

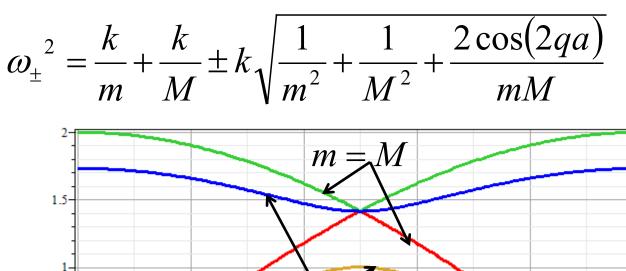
Using 2qa as our unknown parameter is a convenient choice so that we can easily relate our solution to the m=M case.

 $\begin{pmatrix} m\omega^2 - 2k & k\left(e^{-i2qa} + 1\right) \\ k\left(e^{i2qa} + 1\right) & M\omega^2 - 2k \end{pmatrix} \begin{pmatrix} A \\ B \end{pmatrix} = 0$

Solutions :

Note that for m=M, we obtain the same normal modes as before. Is this reassuring?

a. No b. Yes



 $\check{m} \neq M$

qa

0.4

0.5

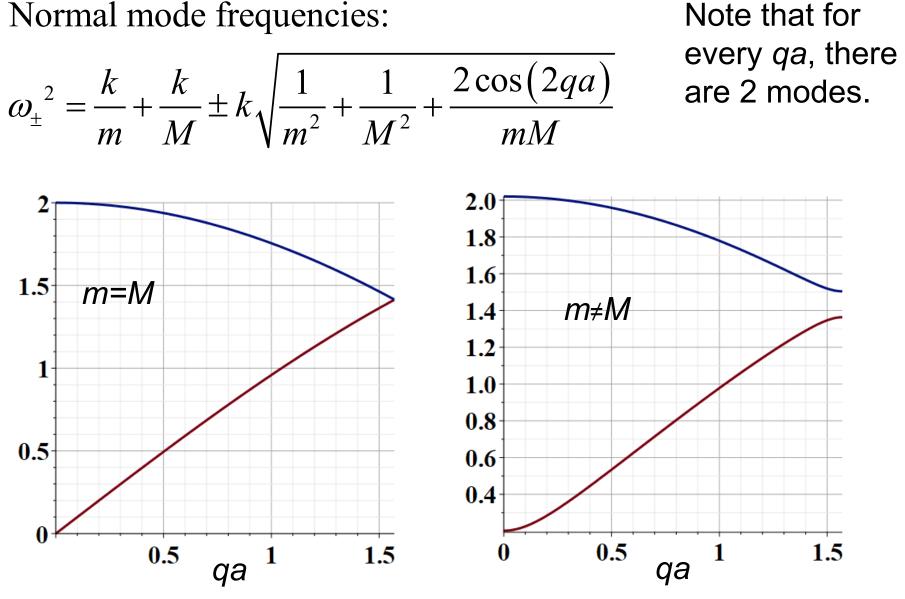
02

ω

0.6

0.8

 qa/π

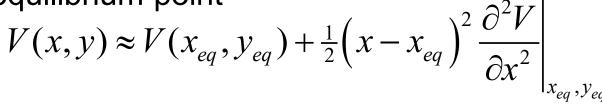


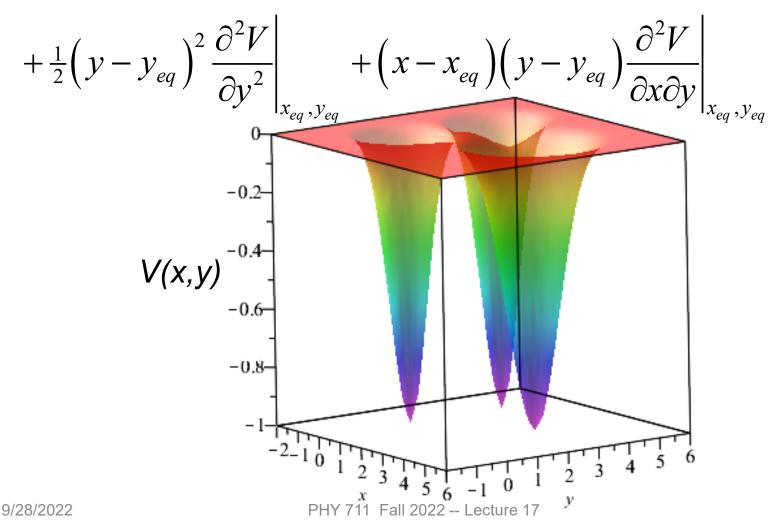
Plotting only distinct frequencies $0 < qa < \pi/2$

Eigenvectors:

For
$$qa = 0$$
:
 $\omega_{-} = 0$
 $\omega_{+} = \sqrt{\frac{2k}{m} + \frac{2k}{M}}$
 $\begin{pmatrix} A \\ B \end{pmatrix}_{-} = N \begin{pmatrix} 1 \\ 1 \end{pmatrix}$
 $\begin{pmatrix} A \\ B \end{pmatrix}_{+} = N \begin{pmatrix} 1 \\ -1 \end{pmatrix}$
For $qa = \frac{\pi}{2}$:
 $\omega_{-} = \sqrt{\frac{2k}{M}}$
 $\omega_{+} = \sqrt{\frac{2k}{m}}$
 $\begin{pmatrix} A \\ B \end{pmatrix}_{-} = N \begin{pmatrix} 1 \\ 0 \end{pmatrix}$
 $\begin{pmatrix} A \\ B \end{pmatrix}_{+} = N \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

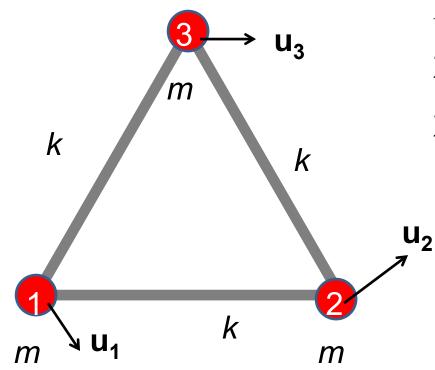
Now consider a potential system in 2 dimensions near its equilibrium point --





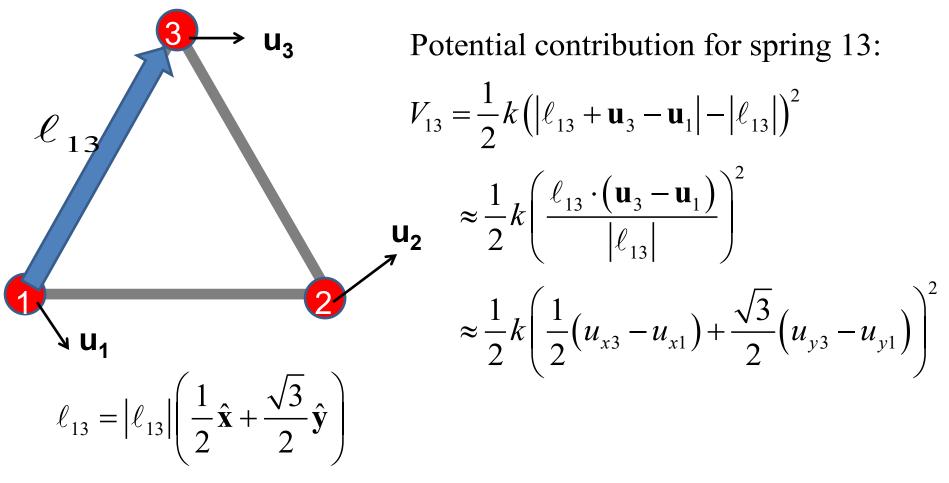
11

Example – normal modes of a system with the symmetry of an equilateral triangle



Degrees of freedom for 2-dimensional motion: 2N = 6

Example – normal modes of a system with the symmetry of an equilateral triangle -- continued



Some details for spring 13:

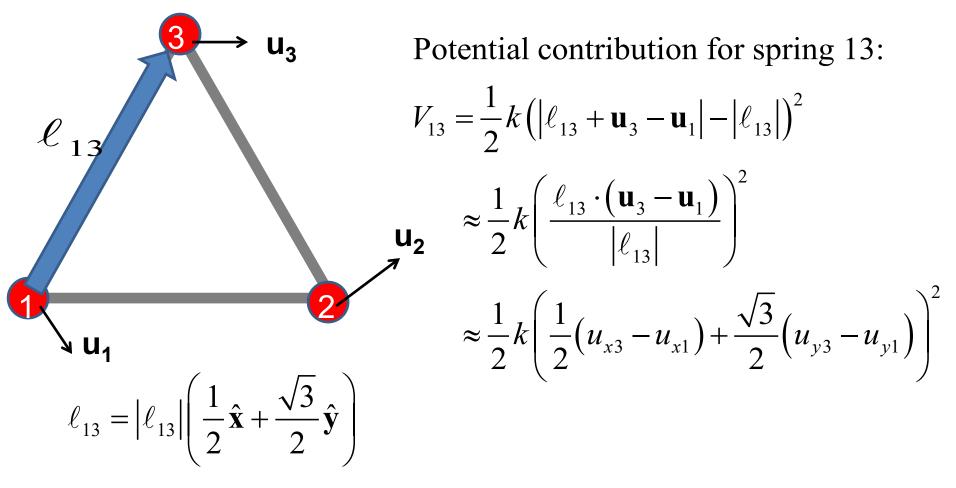
$$\left(\left| \ell_{13} + \mathbf{u}_{3} - \mathbf{u}_{1} \right| - \left| \ell_{13} \right| \right)^{2} \equiv \left(\left(\ell_{13} + \mathbf{u}_{13} \right)^{1/2} - \left| \ell_{13} \right| \right)^{2}$$
 negligible

$$\left(\ell_{13} + \mathbf{u}_{13} \right)^{1/2} = \left| \ell_{13} \right| \left(1 + \frac{2\ell_{13} \cdot \mathbf{u}_{13}}{\left| \ell_{13} \right|^{2}} + \frac{\left| \mathbf{u}_{13} \right|^{2}}{\left| \ell_{13} \right|^{2}} \right)^{1/2}$$
 Assume $|\mathbf{u}_{13}| \ll |\ell_{13}|$

$$\approx \left| \ell_{13} \right| \left(1 + \frac{\ell_{13} \cdot \mathbf{u}_{13}}{\left| \ell_{13} \right|^{2}} \right) = \left| \ell_{13} \right| + \frac{\ell_{13} \cdot \mathbf{u}_{13}}{\left| \ell_{13} \right|}$$

$$\Rightarrow \left(\left(\ell_{13} + \mathbf{u}_{13} \right)^{1/2} - \left| \ell_{13} \right| \right)^{2} = \left(\frac{\ell_{13} \cdot \mathbf{u}_{13}}{\left| \ell_{13} \right|} \right)^{2}$$
 Note that this analysis
of the leading term is
true in 1, 2, and 3
dimensions.

Example – normal modes of a system with the symmetry of an equilateral triangle -- continued



Example – normal modes of a system with the symmetry of an equilateral triangle -- continued

Potential contributions: $V = V_{12} + V_{13} + V_{23}$

$$\approx \frac{1}{2} k \left(\frac{\ell_{12} \cdot (\mathbf{u}_2 - \mathbf{u}_1)}{|\ell_{12}|} \right)^2 + \frac{1}{2} k \left(\frac{\ell_{13} \cdot (\mathbf{u}_3 - \mathbf{u}_1)}{|\ell_{13}|} \right)^2 + \frac{1}{2} k \left(\frac{\ell_{23} \cdot (\mathbf{u}_3 - \mathbf{u}_2)}{|\ell_{23}|} \right)^2$$

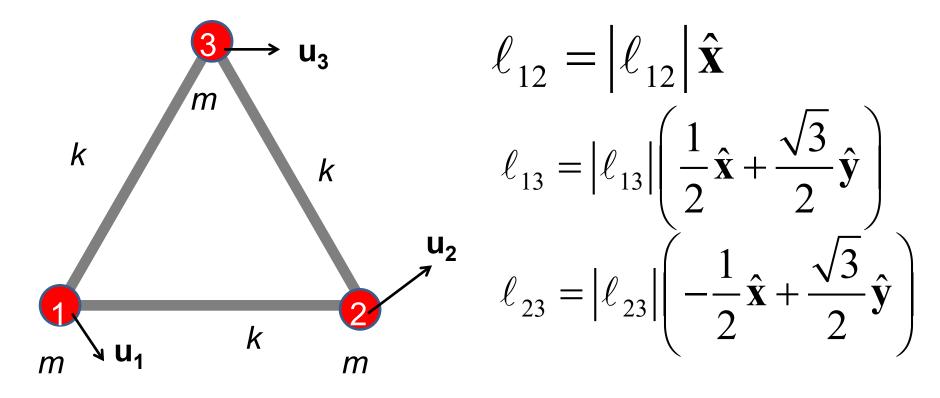
$$\approx \frac{1}{2} k \left(u_{x2} - u_{x1} \right)^2$$

$$+\frac{1}{2}k\left(\frac{1}{2}(u_{x3}-u_{x1})+\frac{\sqrt{3}}{2}(u_{y3}-u_{y1})\right)^{2}$$

$$+\frac{1}{2}k\left(\frac{1}{2}(u_{x2}-u_{x3})-\frac{\sqrt{3}}{2}(u_{y2}-u_{y3})\right)$$
PHY 711 Fall 2022 -- Lecture 17

9/28/2022

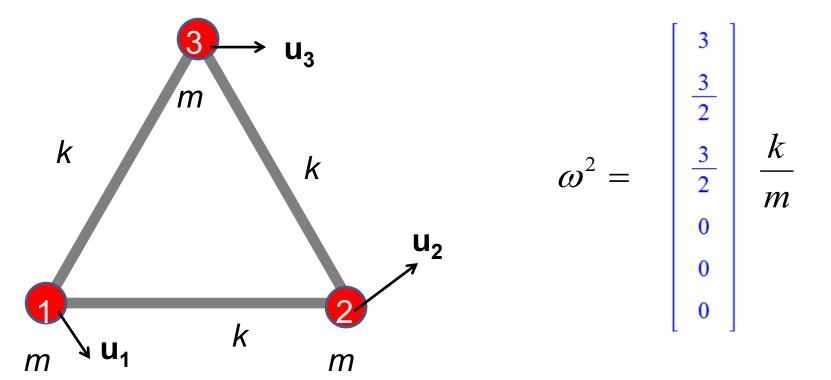
Some details for this case of the equilateral triangle --



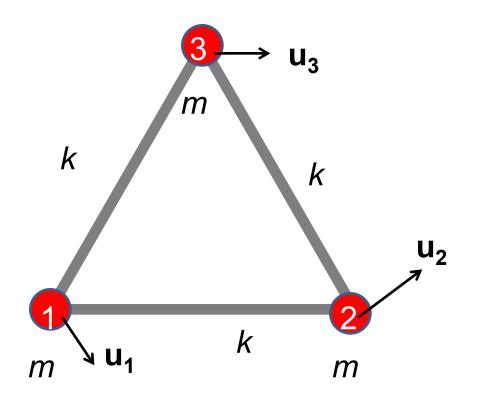
Example – normal modes of a system with the symmetry of an equilateral triangle -- continued

$$\frac{k}{m} \begin{bmatrix} \frac{5}{4} & -1 & -\frac{1}{4} & \frac{1}{4}\sqrt{3} & 0 & -\frac{1}{4}\sqrt{3} \\ -1 & \frac{5}{4} & -\frac{1}{4} & 0 & -\frac{1}{4}\sqrt{3} & \frac{1}{4}\sqrt{3} \\ -\frac{1}{4} & -\frac{1}{4} & \frac{1}{2} & -\frac{1}{4}\sqrt{3} & \frac{1}{4}\sqrt{3} & 0 \\ \frac{1}{4}\sqrt{3} & 0 & -\frac{1}{4}\sqrt{3} & \frac{3}{4} & 0 & -\frac{3}{4} \\ 0 & -\frac{1}{4}\sqrt{3} & \frac{1}{4}\sqrt{3} & 0 & \frac{3}{4} & -\frac{3}{4} \\ -\frac{1}{4}\sqrt{3} & \frac{1}{4}\sqrt{3} & 0 & -\frac{3}{4} & -\frac{3}{4} \end{bmatrix} = \omega^2 \begin{bmatrix} u_{x1} \\ u_{x2} \\ u_{x3} \\ u_{y1} \\ u_{y2} \\ u_{y3} \end{bmatrix}$$

Example – normal modes of a system with the symmetry of an equilateral triangle -- continued



With help from Maple



What can you say about the 3 zero frequency modes?

What can you say about the 3 non-zero frequency modes?

More general treatment of atomic system near equilibrium

Atoms located at the positions :

$$\mathbf{R}^{a} = \mathbf{R}_{0}^{a} + \mathbf{u}^{a}$$

Potential energy function near equilibriu :

$$U(\lbrace \mathbf{R}^{a} \rbrace) \approx U(\lbrace \mathbf{R}_{0}^{a} \rbrace) + \frac{1}{2} \sum_{a,b} \left(\mathbf{R}^{a} - \mathbf{R}_{0}^{a} \right) \cdot \frac{\partial^{2} U}{\partial \mathbf{R}^{a} \partial \mathbf{R}^{b}} \Big|_{\lbrace \mathbf{R}_{0}^{a} \rbrace} \cdot \left(\mathbf{R}^{b} - \mathbf{R}_{0}^{b} \right)$$

Define:

$$D_{jk}^{ab} \equiv \frac{\partial^2 U}{\partial \mathbf{R}_j^{\ a} \partial \mathbf{R}_k^{\ b}} \bigg|_{\left\{ \mathbf{R}_0^{\ a} \right.}$$

so that

$$U(\{\mathbf{R}^{a}\}) \approx U_{0} + \frac{1}{2} \sum_{a,b,j,k} u_{j}^{a} D_{jk}^{ab} u_{k}^{b}$$
$$L(\{u_{j}^{a}, \dot{u}_{j}^{a}\}) = \frac{1}{2} \sum_{a,j} m_{a} (\dot{u}_{j}^{a})^{2} - U_{0} - \frac{1}{2} \sum_{a,b,j,k} u_{j}^{a} D_{jk}^{ab} u_{k}^{b}$$

9/28/2022

PHY 711 Fall 2022 -- Lecture 17

$$L(\{u_{j}^{a}, \dot{u}_{j}^{a}\}) = \frac{1}{2} \sum_{a,j} m_{a} (\dot{u}_{j}^{a})^{2} - U_{0} - \frac{1}{2} \sum_{a,b,j,k} u_{j}^{a} D_{jk}^{ab} u_{k}^{b}$$

Equations of motion:

$$m_a \ddot{u}_j^a = -\sum_{b,k} D_{jk}^{ab} u_k^b$$

For a system of N atoms moving in d dimensions, we must solve a $dN \times dN$ eigenvalue problem.

Solution form:

$$u_j^a\left(t\right) = \frac{1}{\sqrt{m_a}} A_j^a e^{-i\omega t}$$

Eigenvalue problem:

$$\omega^2 A_j^a = \sum_{b,k} \frac{D_{jk}^{ab}}{\sqrt{m_a m_b}} A_k^b$$

Extension of this analysis to a periodic system --Equilibrium positions: $\mathbf{R}_0^a = \mathbf{\tau}^a + \mathbf{T}$ where $\mathbf{\tau}^a$ denotes unique sites within a unit cel and \mathbf{T} denotes all possible lattice translation ve

Solution form for the periodic extended system:

$$u_{j}^{a}(t) = \frac{1}{\sqrt{m_{a}}} A_{j}^{a} e^{-i\omega t + i\mathbf{q}\cdot\mathbf{R}_{0}^{a}} \int_{\mathbf{q}}^{\mathbf{q}} \text{ maps distinct configurations of periodic states.}$$

Define:

$$W_{jk}^{ab}(\mathbf{q}) = \sum_{\mathbf{T}} \frac{D_{jk}^{ab} e^{i\mathbf{q}\cdot\left(\mathbf{\tau}^{a}-\mathbf{\tau}^{b}\right)}}{\sqrt{m_{a}m_{b}}} e^{i\mathbf{q}\cdot\mathbf{T}}$$

Eigenvalue equations :

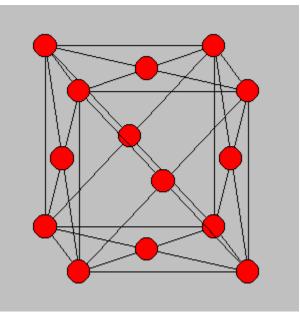
$$\omega^2 A_j^a = \sum_{b,k} W(\mathbf{q})_{jk}^{ab} A_k^b$$

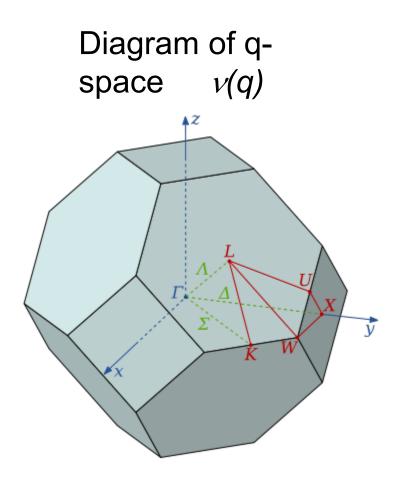
In this equation the summation is only over unique atomic sites.

$$\Rightarrow$$
 Find "dispersion curves" $\omega(\mathbf{q})$

3-dimensional periodic lattices Example – face-centered-cubic unit cell (Al or Ni)

Diagram of atom positions





From: PRB **59** 3395 (1999); Mishin et. al. v(q)

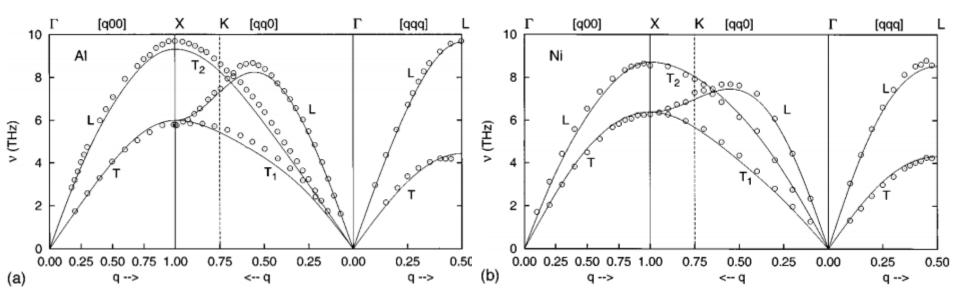
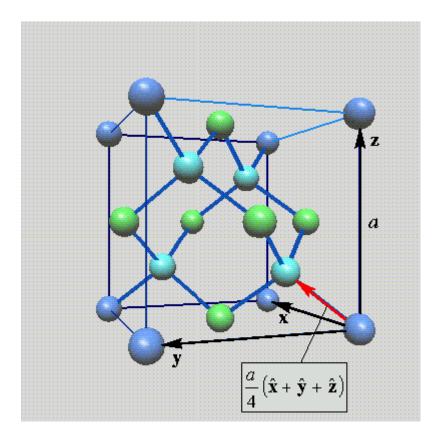


FIG. 2. Comparison of phonon-dispersion curves for Al (a) and Ni (b) predicted by the present EAM potentials, with the experimental values measured by neutron diffraction at 80 K (Al) and 298 K (Ni) (Ref. 33 for Al and Ref. 34 for Ni). The phonon frequencies at point X were included in the fitting database with low weight.

Note that for each q, there are 3 frequencies.

Lattice vibrations for 3-dimensional lattice

Example: diamond lattice



Ref: http://phycomp.technion.ac.il/~nika/diamond_structure.html

B. P. Pandy and B. Dayal, J. Phys. C. Solid State Phys. **6** 2943 (1973)

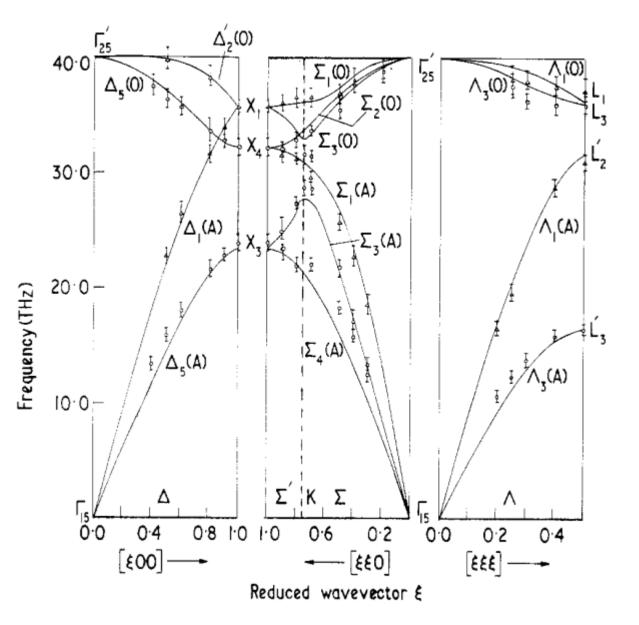


Figure 2. Phonon dispersion curves of diamond. Experimental points et al (1965, 1967). △ and ○ represent the longitudinal and transverse methods PHY 711 Fall 2022 -- Lecture 17 28

Examples of phonon spectra of two forms of boron nitride

Cubic structure

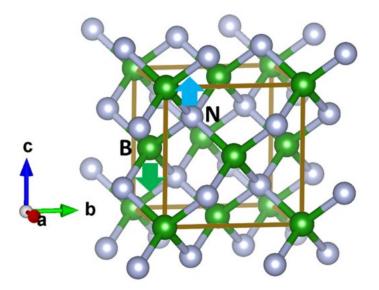


Figure 3. Ball and stick drawing of conventional unit cell of cubic BN (space group $F\bar{4}3m$ [44]) indicating one B and one N site within a primitive cell. The arrows indicate the vibrational directions of the atoms for one of the three degenerate optical modes at $\mathbf{q} = 0$ (Γ point).

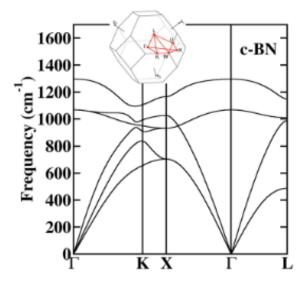
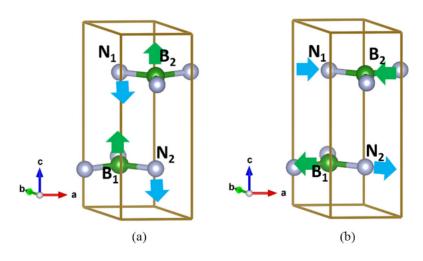


Figure 1. Phonon dispersion curves $(\omega^{\nu}(\mathbf{q}))$ for cubic BN. The inset Brillouin zone diagram was reprinted from Setyawan *et al* [7], copyright (2010), with permission from Elsevier.

Examples of phonon spectra of two forms of boron nitride

Hexagonal structure



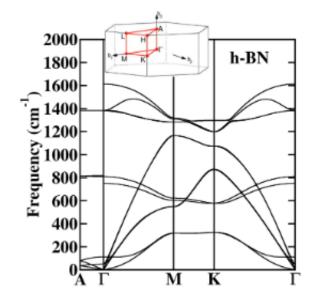


Figure 5. Ball and stick drawing of unit cell of hexagonal BN (space group $P6_3/mmc$ [44]) indicating the four B and N sites. The arrows indicate the vibrational directions of the atoms for $\mathbf{q} = 0$ (Γ point) mode # 7 (a) and for mode # 11 (b).

Figure 2. Phonon dispersion curves $(\omega^{\nu}(\mathbf{q}))$ for hexagonal BN. The inset Brillouin zone diagram was reprinted from Setyawan *et al* [7], copyright (2010), with permission from Elsevier.