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PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF in Olin 103
Discussion on Lecture 17:  Chap. 4 (F&W)

Normal Mode Analysis
1. Normal modes for finite 2 and 3 dimensional 

systems

2. Normal modes for extended systems

Presenter Notes
Presentation Notes
In this lecture, we will extend our normal mode analysis to more complicated systems.
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Presenter Notes
Presentation Notes
This is the last lecture for Chap. 4.    On Friday we will continue to discuss vibrations in extended one dimensional motion as covered in Chap. 7.
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Presenter Notes
Presentation Notes
Homework due Monday.
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Your questions –

From Sam -- How to think about normal modes other than 
their mathematical formulation. They seem to form 
simple patterns such as all moving in sync, but is there 
more to it? Or is it that the normal modes form a kind of 
periodic motion that repeats itself, rather than become 
chaotic?
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mm M

Consider an infinite  system of masses and springs now 
with two kinds of masses:

0 0

Note:  each mass coordinate is measured relative
to its equilibrium position 0, 0,i ix y≡ ≡ 
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Recap from previous lecture --

Presenter Notes
Presentation Notes
Now consider a slight modification of the previous example where masses are alternately m and M with labels x and y.
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Note that 2qa is an unknown 
parameter. 

Does this form seem 
reasonable?

Presenter Notes
Presentation Notes
In this case, we can analyze the system by considering different amplitudes for the m and M masses.    The resulting coupled equations can be written in matrix form.
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Comment on notation --

mm Mmm M

ix iy 1+iy1+ix 2+ix
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Using 2qa as our 
unknown parameter is a 
convenient choice so that 
we can easily relate our 
solution to the m=M 
case.
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Note that for m=M, 
we obtain the same 
normal modes as 
before. Is this 
reassuring?

a. No
b. Yes

Presenter Notes
Presentation Notes
Plotting the solutions for the frequencies as a function of qa.
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Normal mode frequencies:

2cos 21 1 qak k k
m M m M mM
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m=M m≠M
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Note that for 
every qa, there 
are 2 modes.

Plotting only distinct frequencies     0< qa < π/2
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Eigenvectors:
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Presenter Notes
Presentation Notes
Some details about the solutions.
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Now consider a potential system in 2 dimensions near its 
equilibrium point --

Presenter Notes
Presentation Notes
Returning to the finite systems,   consider equilibria in two dimensions as shown.
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Example – normal modes of a system with the 
symmetry of an equilateral triangle
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Degrees of freedom for 
2-dimensional motion:
2 6N =

Presenter Notes
Presentation Notes
Specifically, we will consider 3 masses in an equilateral triangle configuration as shown.
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Example – normal modes of a system with the 
symmetry of an equilateral triangle -- continued

1

3

2
u1

u3

u2

13
( )

( )

( ) ( )

2
13 13 3 1 13

2

13 3 1

13

2

3 1 3 1

Potential contribution for spring 13:
1
2

1     
2

1 1 3     
2 2 2x x y y

V k

k

k u u u u

= + − −

 ⋅ −
≈  

 

 
≈ − + − 

 

u u

u u

 





13 13
1 3ˆ ˆ
2 2

 
= + 

 
x y 

Presenter Notes
Presentation Notes
We need to consider displacements from equilibrium in the x-y plane.   Keeping only linear terms in the displacements we wind up with a simple relationship to analyze.



9/28/2022 PHY 711  Fall 2022 -- Lecture 17 15

( ) ( )( )

( )

( )( )

2 1/2
13 3 1 13 13 13 13

1/2

1/2 1313 13
13 13 13

13 13

13 13 13 13
13 13

1313

1/2

2

13 13
1 3

2

2

2

2

2

3

2

3 1 13
1

Some details for spring 13:

21  

                  1

 

+ − − ≡ + −

 ⋅
+ = + +  

 
 ⋅ ⋅

≈ + = +  
 

 ⋅
⇒ + − =  

 

u u u

uuu

u u

uu

   



 

 

 

 







 



13 13Assume  u  

Note that this analysis 
of the leading term is 
true in 1, 2, and 3 
dimensions.
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Example – normal modes of a system with the 
symmetry of an equilateral triangle -- continued

1

3

2
u1

u3

u2

13
( )

( )

( ) ( )

2
13 13 3 1 13

2

13 3 1

13

2

3 1 3 1

Potential contribution for spring 13:
1
2

1     
2

1 1 3     
2 2 2x x y y

V k

k

k u u u u

= + − −

 ⋅ −
≈  

 

 
≈ − + − 

 

u u

u u

 





13 13
1 3ˆ ˆ
2 2

 
= + 

 
x y 

Presenter Notes
Presentation Notes
We need to consider displacements from equilibrium in the x-y plane.   Keeping only linear terms in the displacements we wind up with a simple relationship to analyze.
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Example – normal modes of a system with the 
symmetry of an equilateral triangle -- continued

Presenter Notes
Presentation Notes
Analyzing the 3 displacements for the equilateral triangle geometry, we find these equations.
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Some details for this case of the equilateral triangle --
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Example – normal modes of a system with the 
symmetry of an equilateral triangle -- continued
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Presenter Notes
Presentation Notes
The results is a 6x6 matrix problem to find eigenvalues and eigenvectors.
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Example – normal modes of a system with the 
symmetry of an equilateral triangle -- continued
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With help from Maple

Presenter Notes
Presentation Notes
Results from Maple.     We have 6 eigenvalues and 3 non-zero modes for this case.



9/28/2022 PHY 711  Fall 2022 -- Lecture 17 21

1

3

2
u1

u3

u2

k k

k
m

m

m

What can you say 
about the 3 zero 
frequency modes?

What can you say 
about the 3 non-zero 
frequency modes?
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More general treatment of atomic system near equilibrium

Presenter Notes
Presentation Notes
Some equations for extended systems.
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Presenter Notes
Presentation Notes
More euqations.
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0

Extension of this analysis to a periodic system --
Equilibrium positions:       
   where  denotes unique sites within a unit cell
   and  denotes all possible lattice translation ve  
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q maps distinct 
configurations of 
periodic states.
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Presenter Notes
Presentation Notes
More equations.
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3-dimensional periodic lattices
Example – face-centered-cubic unit cell (Al or Ni)

Diagram of 
atom positions

Diagram of q-
space     ν(q)

Presenter Notes
Presentation Notes
Interesting extensions to a 3-dimensional crystalline system.
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From:   PRB 59 3395 (1999);  Mishin et. al. ν(q)

Note that for each q, there are 3 frequencies.

Presenter Notes
Presentation Notes
Results of normal modes from experiment and simulations for face centered cubic Al (left) and Ni (right).    Interestingly, the phonon frequency patterns are similar for these very different materials.
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Lattice vibrations for 3-dimensional lattice

Example:  diamond lattice

Ref:   http://phycomp.technion.ac.il/~nika/diamond_structure.html

Presenter Notes
Presentation Notes
Another example – diamond.
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B. P. Pandy and B. 
Dayal, J. Phys. C. 
Solid State Phys. 6
2943 (1973)

Presenter Notes
Presentation Notes
Results for diamond from simulation and experiment.
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Examples of phonon spectra of two forms of boron nitride

Cubic structure
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Examples of phonon spectra of two forms of boron nitride

Hexagonal structure
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To Sam’s question about the relevance of the normal modes –

1. While the classical picture gives us the normal mode 
frequencies and amplitudes, we must use quantum mechanics 
to find the real spectrum.

2. Quantum mechanically, each classical normal mode
frequency ω is associated with quantum mechanical energy 
levels 

3. If one imagines that the vibrating system is in thermodynamic 
equilibrium at temperature T,  then we can estimate its 
Helmholz free energy by summing up all of the spectral states 
and all of the normal modes --

1
2( )      0,1, 2,.....nE n nω= + =
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Helmholz free energy for vibrational energy at temperature T:

Phonon density of states:
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An example of phonon analysis for two similar materials --

From calculations 
by Yan Li
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From calculations 
by Yan Li
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