

PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes for Lecture 18: Chap. 7 (F&W)

Mechanical motion of a continuous string

- 1. Comments on linear vs. non-linear differential equations considering beyond harmonic oscillations
- 2. Back to linear analyses -- masses coupled by springs ←→ mass continuum coupled by string
- 3. Mechanics one-dimensional continuous system
- 4. The wave equation

Your questions –

From Lee -- On slide #6, why does the zero order equation not include the x^3 term from the preceding Euler-Lagrange equation? Does zero order mean zero order in epsilon?

Digression - comment on linear vs non-linear equations

Linear oscillator equations (ODE example from one dimension)

$$V(x) \approx V(x_{eq}) + \frac{1}{2}(x - x_{eq})^2 \frac{d^2V}{dx^2}\Big|_{x_{eq}} + \cdots$$

$$\Rightarrow \frac{1}{2}kx^2 \equiv \frac{1}{2}m\omega^2 x^2$$

$$L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2$$

Euler-Lagrange equations:

$$\ddot{x} = -\omega^2 x$$

Superposition property of linear equations: --

Suppose that the functions $x_1(t)$ and $x_2(t)$ are solutions

$$\Rightarrow Ax_1(t) + Bx_2(t)$$
 are also solutions (all A, B)

Non - linear oscillator equations (example from one dimension)

$$V(x) \approx V(x_{eq}) + \frac{1}{2}(x - x_{eq})^2 \frac{d^2V}{dx^2}\bigg|_{x_{eq}} + \frac{1}{4!}(x - x_{eq})^4 \frac{d^4V}{dx^4}\bigg|_{x_{eq}} + \cdots$$

$$\Rightarrow \frac{1}{2}m\omega^2\left(x^2 + \frac{1}{2}\varepsilon x^4\right)$$

$$L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2\left(x^2 + \frac{1}{2}\varepsilon x^4\right)$$

Euler - Lagrange equations:

$$\ddot{x} = -\omega^2 \left(x + \varepsilon x^3 \right)$$

Superposition-- no longer applies

$$V(x) \approx \frac{1}{2}m\omega^2\left(x^2 + \frac{1}{2}\varepsilon x^4\right)$$

X

Non - linear example - - continued

$$L(x, \dot{x}) = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2\left(x^2 + \frac{1}{2}\varepsilon x^4\right)$$

Euler - Lagrange equations:

$$\ddot{x} + \omega^2 (x + \varepsilon x^3) = 0$$

Perturbation expansion:

$$x(t) = x_0(t) + \varepsilon x_1(t) + \varepsilon^2 x_2(t) + \dots$$

Euler-Lagrange equations:

zero order (factor of ε^0): $\ddot{x}_0 + \omega^2 x_0 = 0$

first order (factor of ε^1): $\ddot{x}_1 + \omega^2 x_1 + \omega^2 x_0^3 = 0$

Non - linear example - - continued

$$\ddot{x} + \omega^2 (x + \varepsilon x^3) = 0$$

Initial conditions:

Perturbation expansion:

$$x(0) = X_0 \qquad \dot{x}(0) = 0$$

$$\dot{x}(0) = 0$$

$$x(t) = x_0(t) + \varepsilon x_1(t) + \dots$$

Euler - Lagrange equations:

zero order:
$$\ddot{x}_0 + \omega^2 x_0 = 0$$

$$\Rightarrow x_0(t) = X_0 \cos(\omega t)$$

first order:
$$\ddot{x}_1 + \omega^2 x_1 + \omega^2 x_0^3 = 0$$

$$\Rightarrow \ddot{x}_1(t) + \omega^2 x_1(t) = -X_0^3 \cos^3(\omega t) = -\frac{X_0^3}{4} (3\cos(\omega t) + \cos(3\omega t))$$

$$\Rightarrow x_1(t) = -\frac{X_0^3}{8\omega^2} \left\{ 3\omega t \sin(\omega t) + \frac{1}{4} \left[\cos(\omega t) - \cos(3\omega t) \right] \right\}$$

$$x(t) = X_0 \cos(\omega t) - \varepsilon \frac{X_0^3}{8\omega^2} \left\{ 3\omega t \sin(\omega t) + \frac{1}{4} \left[\cos(\omega t) - \cos(3\omega t) \right] \right\} + O(\varepsilon^2)$$

Non - linear example - - continued

$$\ddot{x} + \omega^2 (x + \varepsilon x^3) = 0$$

Initial conditions:

$$x(0) = X_0 \qquad \dot{x}(0) = 0$$

$$\dot{x}(0) = 0$$

Perturbation expansion:

$$x(t) = x_0(t) + \varepsilon x_1(t) + \dots$$

Previous result (blows up at large *t*):

$$x(t) = X_0 \cos(\omega t) - \varepsilon \frac{X_0^3}{8\omega^2} \left\{ 3\omega t \sin(\omega t) + \frac{1}{4} \left[\cos(\omega t) - \cos(3\omega t) \right] \right\} + O(\varepsilon^2)$$

By rearranging terms (allowing effective frequency to vary):

$$x(t) = X_0 \cos \left(\omega \left(1 + \varepsilon \frac{3X_0^2}{8\omega}\right)t\right) - \varepsilon \frac{X_0^3}{32\omega^2} \left(\cos(\omega t) - \cos(3\omega t)\right) + O(\varepsilon^2)$$

Numerical solution according to Maple

Back to linear equations –

Longitudinal case: a system of masses and springs:

$$L = T - V = \frac{1}{2} m \sum_{i=0}^{\infty} \dot{x}_i^2 - \frac{1}{2} k \sum_{i=0}^{\infty} (x_{i+1} - x_i)^2$$

$$\Rightarrow m \ddot{x}_i = k (x_{i+1} - 2x_i + x_{i-1})$$

Now imagine the continuum version of this system:

$$x_i(t) \Rightarrow \mu(x,t) \quad \ddot{x}_i \Rightarrow \frac{\partial^2 \mu}{\partial t^2}$$

$$x_{i+1} - 2x_i + x_{i-1} \Rightarrow \frac{\partial^2 \mu}{\partial x^2} (\Delta x)^2$$

Discrete equation:
$$m\ddot{x}_i = k(x_{i+1} - 2x_i + x_{i-1})$$

Continuum equation:
$$m \frac{\partial^2 \mu}{\partial t^2} = k(\Delta x)^2 \frac{\partial^2 \mu}{\partial x^2}$$

$$\frac{\partial^2 \mu}{\partial t^2} = \left(\frac{k\Delta x}{m/\Delta x}\right) \frac{\partial^2 \mu}{\partial x^2}$$

system parameter with units of (velocity)²

For transverse oscillations on a string with tension τ and mass/length σ :

$$\left(\frac{k\Delta x}{m/\Delta x}\right) \Rightarrow \frac{\tau}{\sigma}$$

More details

Longitudinal case

Consider Taylor's series (focussing on *x*-dependence)

$$\mu(x + \Delta x) = \mu(x) + \Delta x \frac{d\mu}{dx} \Big|_{x} + \frac{1}{2} (\Delta x)^{2} \frac{d^{2}\mu}{dx^{2}} \Big|_{x} + \frac{1}{6} (\Delta x)^{3} \frac{d^{3}\mu}{dx^{3}} \Big|_{x} + \frac{1}{24} (\Delta x)^{4} \frac{d^{4}\mu}{dx^{4}} \Big|_{x} + \dots$$

$$\mu(x - \Delta x) = \mu(x) - \Delta x \frac{d\mu}{dx} \Big|_{x} + \frac{1}{2} (\Delta x)^{2} \frac{d^{2}\mu}{dx^{2}} \Big|_{x} - \frac{1}{6} (\Delta x)^{3} \frac{d^{3}\mu}{dx^{3}} \Big|_{x} + \frac{1}{24} (\Delta x)^{4} \frac{d^{4}\mu}{dx^{4}} \Big|_{x} + \dots$$
Therefore
$$(\Delta x)^{2} \frac{d^{2}\mu}{dx^{2}} \Big|_{x} = \mu(x + \Delta x) + \mu(x - \Delta x) - 2\mu(x) - \frac{1}{12} (\Delta x)^{4} \frac{d^{4}\mu}{dx^{4}} \Big|_{x} + \dots$$

$$\Rightarrow \frac{d^{2}\mu}{dx^{2}} \Big|_{x} \approx \frac{\mu(x + \Delta x) + \mu(x - \Delta x) - 2\mu(x)}{(\Delta x)^{2}}$$

More details Transverse case

Net vertical force on increment of string:

$$\tau_{1}\sin\theta_{1} - \tau_{2}\sin\theta_{2} \approx \tau_{1}\tan\theta_{1} - \tau_{2}\tan\theta_{2}$$

$$\approx \tau \left(\frac{dy}{dx}\Big|_{x+\Delta x} - \frac{dy}{dx}\Big|_{x}\right)$$

$$= \tau \Delta x \frac{d}{dx} \left(\frac{dy}{dx}\right)$$

$$= \tau \left(\Delta x \frac{d^{2}y}{dx^{2}}\right)$$

Transverse displacement:

$$\frac{\partial^2 \mu}{\partial t^2} = \frac{\tau}{\sigma} \frac{\partial^2 \mu}{\partial x^2}$$

Wave equation:

$$\frac{\partial^2 \mu}{\partial t^2} = c^2 \frac{\partial^2 \mu}{\partial x^2}$$

Lagrangian for continuous system:

Denote the generalized displacement by $\mu(x,t)$:

$$L = L\left(\mu, \frac{\partial \mu}{\partial x}, \frac{\partial \mu}{\partial t}; x, t\right)$$

Hamilton's principle:

$$\delta \int_{t_{i}}^{t_{f}} dt \int_{x_{i}}^{x_{f}} dx L\left(\mu, \frac{\partial \mu}{\partial x}, \frac{\partial \mu}{\partial t}; x, t\right) = 0$$

$$\Rightarrow \frac{\partial L}{\partial \mu} - \frac{\partial}{\partial x} \frac{\partial L}{\partial (\partial \mu / \partial x)} - \frac{\partial}{\partial t} \frac{\partial L}{\partial (\partial \mu / \partial t)} = 0$$

Euler - Lagrange equations for continuous system:

$$\frac{\partial L}{\partial \mu} - \frac{\partial}{\partial x} \frac{\partial L}{\partial (\partial \mu / \partial x)} - \frac{\partial}{\partial t} \frac{\partial L}{\partial (\partial \mu / \partial t)} = 0$$

Example:

$$L = \frac{\sigma}{2} \left(\frac{\partial \mu}{\partial t} \right)^{2} - \frac{\tau}{2} \left(\frac{\partial \mu}{\partial x} \right)^{2}$$

$$\Rightarrow \sigma \frac{\partial^{2} \mu}{\partial t^{2}} - \tau \frac{\partial^{2} \mu}{\partial x^{2}} = 0$$

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0 \quad \text{for } c^2 = \frac{\tau}{\sigma}$$

Note that this is an example of a partial differential equation

General solutions $\mu(x,t)$ to the wave equation :

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0$$

Note that for any function f(q) or g(q):

$$\mu(x,t) = f(x-ct) + g(x+ct)$$

satisfies the wave equation.

Initial value solutions $\mu(x,t)$ to the wave equation;

attributed to D'Alembert:

would be given

These functions

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0 \qquad \text{where } \mu(x,0) = \phi(x) \text{ and } \frac{\partial \mu}{\partial t}(x,0) = \psi(x)$$

Assume:

then:
$$\mu(x,t) = f(x-ct) + g(x+ct)$$

$$\frac{\partial \mu}{\partial t}(x,0) = \phi(x) = f(x) + g(x)$$

$$\frac{\partial \mu}{\partial t}(x,0) = \psi(x) = -c\left(\frac{df(x)}{dx} - \frac{dg(x)}{dx}\right)$$

$$\Rightarrow f(x) - g(x) = -\frac{1}{c}\int_{-c}^{x} \psi(x')dx'$$

Solution - - continued:

$$\mu(x,t) = f(x-ct) + g(x+ct)$$

then: $\mu(x,0) = \phi(x) = f(x) + g(x)$

$$\frac{\partial \mu}{\partial t}(x,0) = \psi(x) = -c \left(\frac{df(x)}{dx} - \frac{dg(x)}{dx} \right)$$

$$\Rightarrow f(x) - g(x) = -\frac{1}{c} \int_{c}^{x} \psi(x') dx'$$

For each x, find f(x) and g(x):

$$f(x) = \frac{1}{2} \left[\phi(x) - \frac{1}{c} \int_{-\infty}^{x} \psi(x') dx' \right]$$

$$g(x) = \frac{1}{2} \left(\phi(x) + \frac{1}{c} \int_{-\infty}^{x} \psi(x') dx' \right)$$

$$\Rightarrow \mu(x,t) = \frac{1}{2} \left(\phi(x-ct) + \phi(x+ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} \psi(x') dx'$$

Example:

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0 \quad \text{where } \mu(x,0) = e^{-x^2/\sigma^2} \text{ and } \frac{\partial \mu}{\partial t}(x,0) = 0$$

$$\Rightarrow \mu(x,t) = \frac{1}{2} \left(e^{-(x+ct)^2/\sigma^2} + e^{-(x-ct)^2/\sigma^2} \right)$$

9/30/2022

PHY 711 Fall 2022 -- Lecture 18

Example:

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0 \quad \text{where } \mu(x,0) = 0 \text{ and } \frac{\partial \mu}{\partial t}(x,0) = -\frac{2x}{\sigma^2} e^{-x^2/\sigma^2}$$

$$\Rightarrow \mu(x,t) = \frac{1}{2c} \left(e^{-(x+ct)^2/\sigma^2} - e^{-(x-ct)^2/\sigma^2} \right)$$

Note that
$$\frac{\partial \mu(x,t)}{\partial t} = -\frac{1}{\sigma^2} \left((x+ct)e^{-(x+ct)^2/\sigma^2} + (x-ct)e^{-(x-ct)^2/\sigma^2} \right)$$

$$t=0.$$

