PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes for Lecture 18: Chap. 7 (F&W)

Mechanical motion of a continuous string

1. Comments on linear vs. non-linear differential

equations — considering beyond harmonic
oscillations

2. Back to linear analyses -- masses coupled by
springs €=2mass continuum coupled by string

3. Mechanics one-dimensional continuous system

4. The wave equation

9/30/2022 PHY 711 Fall 2022 -- Lecture 18 1


Presenter Notes
Presentation Notes
The one dimensional motion of a large number masses interconnected with springs provides a model of longitudinal motions of a continuous elastic spring and related topics covered in Chapter 7 of your textbook


9/21/2022

13 |[Mon, 9/19/2022 |Chap. 3 & 6 |Liouville theorm #10

14 \Wed, 9/21/2022 |Chap. 3 & 6 |Canonical transformations #11 9/23/2022
15 |Fri, 9/23/2022  |Chap. 4 Small oscillations about equilibrium #12 9/26/2022
16 [Mon, 9/26/2022 |Chap. Normal modes of vibration #13 9/28/2022
17 \Wed, 9/28/2022 |Chap. Normal modes of more complicated systems #14 10/03/2022

18 [Fri, 9/30/2022  |Chap. Motion of strings

19 Mon, 10/03/2022 |Chap. Sturm-Liouville equations

NN N R A

20 Wed, 10/05/2022 |Chap. Sturm-Liouville equations

21 Fri, 10/07/2022 |Chap. 1-4,6-7 |Review

Mon, 10/10/2022 |No class Take home exam
Wed, 10/12/2022|No class Take home exam
Fri, 10/14/2022 |No class Fall break

22 Mon, 10/17/2022 |Chap. 7 Class resumes
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Presenter Notes
Presentation Notes
Start reading Chapter 7.


October 2022

S

25

No class_2
[

9
16
23

30

9/30/2022

M
26
3
17
24

31

T W
27 28
4 5
11 @
18 19
25 26
1 2

PHY 711 Fall 2022 -- Lecture 18

29

6

13

20

27

3

14

21

28

8 Mid-term

exam
15

22
29

5



Your questions —

From Lee -- On slide #6, why does the zero order equation
not include the x*3 term from the preceding Euler-Lagrange
equation? Does zero order mean zero order in epsilon?
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®
Digression — comment on linear vs non-linear equations

Linear oscillator equations (ODE example from one dimension)

1 d’v
Vi(x)= V(xeq)+§(x—xeq)2 3 L.

| |
- — sz = — ma)2x2
2
' I, 1 2.2
L(x,x) =—mx ——mwx
2 2
Euler-Lagrange equations: X=—-w’x
Superposition property of linear equations: --

Suppose that the functions x, (¢) and x, (¢) are solutions

= Ax, (¢)+ Bx, (t) are also solutions (all 4, B)


Presenter Notes
Presentation Notes
Digression on the special properties of linear equations in contrast to complications for non-linear equations.


.
Non - linear oscillator equations (example from one dimension)

1 d’ 1 d’
V(x)zV(xeq)Jra(x—xeq deZ/ +Z!(x—xeq de:

1
:>—ma)2(x2+lex4j
2 2

L(x,ic)z %micz —%ma)z(xz +%5x4j

Euler - Lagrange equations :

+ ...

X:—a)z(x+ex3)

Superposition-- no longer applies


Presenter Notes
Presentation Notes
An example of the effects of non-linearity.


5>O/

/
/ g=0

8|<0
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Presenter Notes
Presentation Notes
Plot of nonlinear potentials.


Non - linear example - - continued

L(x,)'c): %mxz —%ma)z(xz +%£x4j

Euler - Lagrange equations :
)'c'+a)2(x+gx3): 0
Perturbation expansion:
x(t) = X, (t) + £X, (t) + 52x2 (t) + ...
Euler-Lagrange equations:
zero order (factor of £°): X, + w’x, =0

first order (factor of £'): X, + @’x, + w’x, =0


Presenter Notes
Presentation Notes
Approximate solution to example non-linear equation.


Non - linear example - - continued

X+ o’ (X + &x’ ) =0 Initial conditions :
Perturbation expansion : x(0)= X, x(0)=0
x(t)=x,(¢)+ex,(t)+...
Euler - Lagrange equations :
zeroorder: X, +@’x, =0 = x,(1) = X, cos(wr)

first order: ¥, +a’x, +@’x, =0
3

= X, () +@’x,(t) =—X, cos’ (wt) = —%(3cos(a)t)+cos(3a)t))

3

= xl(t)z—SXwo2 {Swt sin(a)t)+%[cos(a)t)—cos(3a)t)]}

x(t) =X, cos(a)t) —& ;C(jz {Swt sin(a)t) + i[cos(a}t) — cos(3a)t)]} + 0(82)



Presenter Notes
Presentation Notes
Non-linear equation continued.


Non - linear example - - continued

i+’ (x +&x’ ) =0 Initial conditions :
x(0) =X, x(0)=0

Perturbation expansion:
x(t) =X, (t) + &£X, (t) +...

Previous result (blows up at large ¢):
3

x(t)=X,cos(wt)—¢ ;Z)Oz {3wt sin (ot )+ i[cos(a)t) —~ cos(3a)t)}} - 0(52)

By rearranging terms (allowing effective frequency to vary):

x(t)=X, cos(w(l +& 3;(5 ]t] —& 3;(5)2 {cos (1) —cos(3wr )} + 0(52)



Presenter Notes
Presentation Notes
More details.


Foro=1, X,=1, €=05 ~
Regrouped/g\xpansion / \

: ~ & L\ L\
N 5 \\///9 NVZATERPZ
| N/ \
N

Numerical solution according to Maple

As

| Original perturbation
expansion

= 0.5

0
~ 0.5
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Presenter Notes
Presentation Notes
Plot of results.


Back to linear equations —

Longltudlnal case: a system of masses and springs:

Now 1magine the continuum version of this system:

2
()= u(nt) = a
ot
2
Xit1 _2‘xi X = ‘ él(Ax)z

Ox
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Presenter Notes
Presentation Notes
Showing how the case of the extended mass and spring system approximates the continuous elastic string.


Discrete equation:  mX,; = k(xl.+1 —2x, + xl._l)
2 2
Continuum equation: m g ’;l = k(Ax)2 g ’él
ot Ox
0’ L _( kAx j@z u
ot m/Ax ) Ox°

system parameter with
units of (velocity)?

For transverse oscillations on a string

with tension 7 and mass/length o

(kij T
_ —
m/ Ax o
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Presenter Notes
Presentation Notes
Regrouping constants in terms of spring constant times increment of length and mass per unit length which combine to give a squared velocity for the longitudinal case.     For the transverse case, string tension is involved.


More details

Longitudinal case

Consider Taylor's series (focussing on x-dependence)

2
(e A) = () + Ar 2 L

dx 2

d
mx—Ax):u(x)—Axd—f :

»d’ i

2
X

Therefore (Ax)

2
L
dx

L M+ A + p(x = Ax) — 2 u(x)
(Ax)

X

2
dx
X

(&)

sd’ i
dx’

sd’ i

3
dx
X

X

=u(X+AX)+u(x—AX)—2u(X)—E

_I__
24

L (ax)

1

+£(Ax)

(&x)

s d’
dx’ ;

sd* i
dx*

sd*u
dx*

u




More details
Transverse case

9/30/2022

Net vertical force on increment of string:

7,sin0, — 7,51n6, = r;tan@, — r,tan o,
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Transverse displacement:

T.
///KV f \

p(x,t)
O’ 1 _ T 0’ 1
o> o Ox’
Wave equation:
0" i _ o2 0" i
ot’ ox’
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Presenter Notes
Presentation Notes
The diagram shows how the y component of the net tension contributes to the transverse motion.


Lagrangian for continuous system :

Denote the generalized displacement by u(x,?) :

o L(ﬂﬁﬂ Ou. h

?

ox ot )
Hamilton's principle::

5Idtjde(y, OH Z’t‘ x,tjzo

Ox

oL 0 oL o0 oL
— — — —
ou ox 0(0ulox) ot o(ou/ot)



Presenter Notes
Presentation Notes
It is possible to adapt the Lagrangian formalism to this continuous system.


Euler - Lagrange equations for continuous system :
oL 0o oL 0 oL
ou ox 0(0ulox) ot o(oulot)

Example:

;o a_ujz_ t(ouY
2\ Ot 2\ Ox

2 2
8,;1_78,21 0
ot Ox

—> 0

2 2
8’?—028’1ij for (32:1
ot Ox o



Presenter Notes
Presentation Notes
The continuum version of the Euler-Lagrange equations result in the wave equation for this example.


Note that this is an example of a partial differential equation

General solutions u(x,¢) to the wave equation :

2 2

g ’;l -’ g ’l; =0
ot Ox

Note that for any function f(g)or g(q):
ux)= f(x—ct)+g(x+ct)

satisfies the wave equation.



Presenter Notes
Presentation Notes
In the next several slides we will discuss solutions to the wave equation.     Note that the one dimensional wave equation has some special properties.


Initial value solutions u(x,?) to the wave equation;

attributed to D' Alembert : These functions

lWOUId be given

0" 0" Ou
Pyl c’ 7 =0 where u(x,0 ) = ¢(x) and E(X’O) = (x)

Assume :
ux,t)=f(x—ct)+g(x+ct)
then: u((x0)=¢(x)=f(x)+g(x)

oL _ _ [dix)  dg(x)
5()@0) =y(x) = C( N j

= £(0-g(0) == [p(x)av
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Presenter Notes
Presentation Notes
This method by D’Alembert is based on the special property of the wave equation.


Solution - - continued : ux,t)=f(x—ct)+g(x+ct)

then: u(x0)=¢(x)=f(x)+g(x)

% 00) = () = L0 )

= f(0)-g(x) = j p (x')dx

For each x, find f(x)and g(x):

()= %[qﬁ(x) —%fw(x')dx']
200 =1 900+ [y ()
2 C

= u(x,t) = %(¢(x —ct)+¢(x+ ct))+ 2%} jw(x')dx'


Presenter Notes
Presentation Notes
D’Alembert’s method continued.


Example:

=0.
2.
2

) 2

-4 -2 (

9/30/2022 PHY 711 Fall 2022 -- Lecture 18 22


Presenter Notes
Presentation Notes
An example.    (Use slide show to see animation.)


%Xample ;

2
aél 2 T4 =0 where u(x,0)=0 and a'u(xO)—_ﬁe—xz/az
Ot Ox2 =
o ey = (et o)
2c
Note that >y — _LZ((X-F ct)e—(x+cz)2 LA (x ct) (et} /az)
ot o
t=0.
1-
0.5
_iﬁl — !5 ] a T é I N io
-0.5-
_1_'
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Presenter Notes
Presentation Notes
Another example.   Use slide show to see animation.
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