PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Discussion on Lecture 19 — Chap. 7 (F&W)

Solutions of differential equations

1. The wave equation — traveling wave solutions
2. The wave equation — standing wave solutions

3. The Sturm-Liouville equation
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Presenter Notes
Presentation Notes
In this lecture, we follow the textbook to use the example of the one-dimensional wave equation to discuss ordinary differential equations more generally and develop some solution methods.
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Presenter Notes
Presentation Notes
Expected schedule for the next weeks…


PHY 711 — Assignment #15
10/03,/2022

Continue reading Chapter 7 in Fetter and Walecka.

Consider a one-dimensional traveling wave characterized by displacement p(xr,t) as a function
of position x for —oc < 2 < oo and time ¢ for 0 < ¢ < oo, is described by the wave equation:

otz a2

where ¢ denotes the wave speed. Find the functional form for the traveling wave p(x,t) for each of
these initial conditions.

0, (1)

1. At t =0,
A Az, 0)

p(z,0) = ——— and

cosh () =0, 2)

where A is a given wave amplitude.

2. At t =0,
du(z,0)  Asinh(z)

iz, 0) =0 and :
(. 0) e ot cosh?(x) ’

where A is a given wave speed amplitude.
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Presenter Notes
Presentation Notes
This homework can most easily be done using D’Alembert’s approach.


One-dimensional wave equation
representing longitudinal or transverse displacements
as a function of x and t, an example of a partial
differential equation --

Traveling wave solutions thanks to D’Alembert --

For the displacement function, u(x,?), the wave equation has the form:

2 2

g 'g —c’ g ’Lzl =0
ot Ox

Note that for any function f(g) or g(q) :
ux,t) = f(x—ct)+ g(x+ct)

satisfies the wave equation.



Presenter Notes
Presentation Notes
Review of wave equation.


Initial value traveling wave solutions u(x,?) to the wave equation;

attributed to D'Alembert: These functions

lWOUId be given

where u(x,0) = ¢(x) and %(x, O)\zw(x)

2 2
g ’f —c’ g ’l; 0
ot Ox
Assume:
ux,t) = f(x—ct)+g(x+ct)
then: u(x,0)=p(x) = f(x)+g(x)

o, o (dft)dgl)
S50) =y (x) = c[ " dxj

= £~ g(0) = [y
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Presenter Notes
Presentation Notes
This method by D’Alembert is based on the special property of the wave equation.


Solution - - continued : ux,t)=f(x—ct)+g(x+ct)

then: u(x0)=¢(x)=f(x)+g(x)

% 00) = () = L0 )

= f(0)-g(x) = j p (x')dx

For each x, find f(x)and g(x):

()= %[qﬁ(x) —%fw(x')dx']
200 =1 900+ [y ()
2 C

= u(x,t) = %(¢(x —ct)+¢(x+ ct))+ 2%} jw(x')dx'


Presenter Notes
Presentation Notes
D’Alembert’s method continued.


Checking that D'Alembert's solution solves the wave equation:

2 2
OU_20H_,

o ox’
1 1 X+ct ' '
L(x,t) = E(gp(x —ct)+@(x+ct))+ 2—Cx_fctl//(x )dx
aﬂgcc’ ) _ %(gp'(x —ct)+p'(x+ct))+ %C(W(x e +y(x+en)
2
: g)(;’t) - %(W(x —ct)+"(x +ct)) +2LC(‘//'(X —ct)+y (x+ch))
é%de):E(_¢(»—a)+¢%x+co)+510#4x—00+¢4x+cﬂ)
o1 7 2c
2 2 ?
: gif’t) = (9" (=) + 9"+ )y (=) +y (k)
Here we have assumed that ¢(u) and y(u) are continuous functions and
do(u
() = o)

du



Example:

=0.
2.
2

) 2

-4 -2 (
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An example.    (Use slide show to see animation.)


%Xample ;

2
aél 2 T4 =0 where u(x,0)=0 and a'u(xO)—_ﬁe—xz/az
Ot Ox2 =
o ey = (et o)
2c
Note that >y — _LZ((X-F ct)e—(x+cz)2 LA (x ct) (et} /az)
ot o
t=0.
1-
0.5
_iﬁl — !5 ] a T é I N io
-0.5-
_1_'
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Presenter Notes
Presentation Notes
Another example.   Use slide show to see animation.


Other types of solutions to the wave equation:

2 2
OU_ 20H_

ot* Ox”

Note that because of the way that the equation 1s written,

it 1s possible to find "separable" solutions of the form

p(x,1) = X(x)I'(2)
or more generally, a linear combination of separable solutions:

u(x,0) =Y X, (0T, (1)



Other types of solutions to the wave equation:
2 2
g 27 g 20 for  u(x,t) = X(x)T(¢)
ot Ox
1 d°X(x) 1 d°T@)
X(x) dx’° c’T(t) dt?

For example, suppose the time function 1s harmonic in time with

frequency w: T(¢)=cos(wt+n)
Then the spacial function must statisfy the ordinary differential equation:

d’ X (x) o’
dx’ N _C_ZX(X)

= X(x)=Asin(kx+v) where k= @
C



It is often the case, there are boundary values specified for
X(x).

For example, suppose X(0)=0and X(a) =0 —-—
nTx nic

= X(x) = Asin(—j and @ = ——
a a



niwx nict

Standing wave --  1(x,t) = Asin| —— |COS
A A
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How are the traveling wave and standing wave solutions to
the wave equations related?

A. They are exactly the same

B. They are not related
C. 777



B
The wave equation and related linear PDE’s

One dimensional wave equation for u(x,?):

2 2
af—czafzo Whereczzi
ot Ox o

Generalization for spacially dependent tension and mass density plus

an extra potential energy density:

2
o) TAED 2 o) D syt =0
Factoring time and spatial variables:

u(x,t)=¢(x) cos(wt + )
Sturm-Liouville equation for spatial function @(x):

_ d_(fm v (x)j FY(0)P() = O’ ()P(x)
X dx



Presenter Notes
Presentation Notes
Generalization of the wave equation.   Equations in this class are separable in the time variables and the spatial variable satisfies  a generalized eigenvalue problem of this form.


Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: ——T(x)— +v(x) — /Ia(x) o(x)=F(x)

\\/

given functions

applied
force

When applicable, it is
assumed that the form of
the applied force is known.

solution to be
determined

Homogenous problem: F(x)=0
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Presentation Notes
We will sometimes want to generalize even further with an “inhomogeneous” term such as an applied force.


Examples of Sturm-Liouville eigenvalue equations --

(—ir(x)di +v(x)— Aa(x)) p(x)=0

dx X

Bessel functions: 0<x <

T(x)=—x v(ix)=x o(x)= 1 A=v: p(x)=J,(x)
X

Legendre functions: —-1<x<1
T(x)z—(l—xz) v(x)=0 o(x)=1 A=I(l+1) ¢@(x)=PB(x)
Fourier functions: 0<x<1

r(x)=1 v(x)=0 o(x)=1 A=n'm" @(x)=sin(nrx)


Presenter Notes
Presentation Notes
For now, we will focus on eigenvalues of the homogeneous equations.


Solution methods of Sturm-Liouville equations
(assume all functions a(wd gonstagts are real):

Homogenous problem: | ——7(x)—+v(x)— /Ia(x)j% (x)=0
dx dx

Inhomogenous problem : (— 4 7(x) 4 +v(x)— /Ia(x)j¢(x) = F(x)
dx dx

Eigenfunctions :
d d
(— d—T(X)— + V(x)]fn (x) = 4,0(x)f,(x)
X dx
Orthogonality of eigenfunctions: j ba(x) f.(x)f (x)dx=0_N ,

where N, = [ o(x)(f,(x)) dx.
Completeness of eigenfunctions:

J(X)Z ﬁa(x])vﬁq(x') _ 5(x—x')

n



Presenter Notes
Presentation Notes
The eigenfunctions of these equations have very useful properties such as completeness.


Why all of the fuss about eigenvalues and eigenvectors?

d.

b.
C.

They are sometimes useful in finding solutions to
differential equations

Not all eigenfunctions have analytic forms.

It is possible to solve a differential equation without
the use of eigenfunctions.

. Eigenfunctions have some useful properties.



®
Comment on orthogonality of eigenfunctions

(d . d Ve
T W YL@ = 40001, ()

( d d \ ;
_ — 4 —
wr 7(x) o V(X)/ fn(x)=4,0(x)],(x)

fm(x)(—%f(X)%w(X)jﬂ(X)—ﬂ(X)(—dixT(X)%W(X)jfm(X)
— (4, = 4,0 () £,(x).f, (%)

(fm ()Y ;ff) f @ Z)(CX)

A j=(zn = 3,) o) £,(0) £, ()


Presenter Notes
Presentation Notes
Orthogonality of eigenfunctions.


®
Comment on orthogonality of eigenfunctions -- continued

df (X)

L (x)] (4,

__(f (x)z'(x) ﬂvm)a(x),fn ()C)fm(X)

Now consider integrating both sides of the equation in the interval
a<x<bh:

df (%)

@) L (x)]

(f (1)7(x) =(4, = 4,) [ dxo ()£, (x) £, (x)

4+

Vanishes for various boundary conditions
at x=a and x=b
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Presentation Notes
Orthogonality continued.


Comment on orthogonality of eigenfunctions -- continued

df (X) df,, (X)j

dx

= 1, (0)7(x)

[f ()7 (x) = (4, = 4,) [ dxo(x) £, () £,,(x)

a

Possible boundary values for Sturm-Liouville equations:

1. f,.(@)=1,0b)=0
2. 2L
dx

a

3.f.(a)=f,(b) and

df (X)

=0

b

dfm (a) _4d/,,(b)

dx dx

In any of these cases, we can conclude that:

j dxo(x) f.(x) f.(x) =0 for A # 1


Presenter Notes
Presentation Notes
Orthogonality continued.


~ Comment on “‘completeness”

It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f (x)

h(x)= > C,f.(x),

where C :N% [ o (em £, ('

These ideas lead to the notion that the set of
eigenfunctions 7 (x) form a "~ "complete"” set in the sense
of ““spanning" the space of all functions in the interval
a < x <b, as summarized by the statement:

o(x)y /» (xj)vﬂ () _ s(x—x).

n



Presenter Notes
Presentation Notes
Notion of completeness.


~ Comment on “completeness” -- continued
h(x)= Y C,f.(x),
1 eb
where €, =—- j o (x")h(x") f. (x")dx".

Consider the squared error of the expansion:

e = j dxa(x)(h(x) -yc, fn(x)]

2 e o
€~ can be minimized:

Oe’ ’

e 0=-2 j dxo—(x)[h(x) _ Zn:cn fn(x)j £ (x)

m

=C = NLmj[dxa(x)h(x) f,(x)



Presenter Notes
Presentation Notes
Notion of completeness and practical applications.      Next time, we will extend this idea of completeness to develop important relationships.
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