PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 20 — Chap. 7 (F&W)

Properties of Sturm-Liouville equations
1. Eigenfunctions of Sturm-Liouville equation

2. Notion of the completeness property of
eigenvalue expansions

3. Green’s function solution methods
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Presenter Notes
Presentation Notes
In this lecture, we follow the textbook to use the example of the one-dimensional wave equation to discuss ordinary differential equations more generally and develop some solution methods.


10/5/2022

PHYSICS

COLLOQUIUM

Ruddlesden—Popper (BEP) phase 2D perovskites are recent
emerging materials for photoveltaics, light emitting diodes and
radiation sensing. RP perovskites are nanostructured material in
a naturally formed quantum well geometry, that have been
integrated in functional devices, featuring with greatly extended
operational lifetimes. Recently, it is found that the carrier
transport properties are pretty unique in the 2D BP perovskite
crystal and thin films. A luminescent “edge state™ was
discovered that greatly impact the carier transport and
recombination processes.

In this talk, I will first discuss the unique camrier transport
properties of 2D perovskite single crystals. Using a scanning
photocurrent microscopy technique, we probed an unuvsupally
long carrier diffusion length in the RP perovskite single crystals.
We attributed it to the intrinsically existing shallow trap that
extended the carrier lifetime via trapping/de-trapping process.
Next, [ will talk about the 2D RP perovskites in radiation
detector applications. We integrated the quasi-2D perovskite
polverystalline film into photodiodes and achieved high X-rav
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15 |Fri, 9/23/2022  |Chap. 9/26/2022

4 Small oscillations about equilibrium #12
16 Mon, 9/26/2022 |Chap. 4 Normal modes of vibration #13 9/28/2022
17 \Wed, 9/28/2022 |Chap. 4 Normal modes of more complicated systems |#14 10/03/2022
18 Fri, 9/30/2022 |Chap. 7 Motion of strings
19 Mon, 10/03/2022 |Chap. 7 Sturm-Liouville equations #15 10/05/2022
» 20 |Wed, 10/05/2022 |Chap. 7 Sturm-Liouville equations

21 |Fri, 10/07/2022 |Chap. 1-4,6-7 |[Review

Mon, 10/10/2022 |No class Take home exam

Wed, 10/12/2022 |[No class Take home exam

Fri, 10/14/2022 |No class Fall break
22 Mon, 10/17/2022 |Chap. 7 Class resumes
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Presenter Notes
Presentation Notes
Expected schedule for the next weeks…


B
The wave equation and related linear PDE’s

One dimensional wave equation for u(x,?):

2 2
af—czafzo Whereczzi
ot Ox o

Generalization for spacially dependent tension and mass density plus

an extra potential energy density:

2
o) TAED 2 o) D syt =0
Factoring time and spatial variables:

u(x,t)=¢(x) cos(wt + )
Sturm-Liouville equation for spatial function @(x):

_ d_(fm v (x)j FY(0)P() = O’ ()P(x)
X dx



Presenter Notes
Presentation Notes
Generalization of the wave equation.   Equations in this class are separable in the time variables and the spatial variable satisfies  a generalized eigenvalue problem of this form.


Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: ——T(x)— +v(x) — /Ia(x) o(x)=F(x)

\\/

given functions

applied
force

When applicable, it is
assumed that the form of
the applied force is known.

solution to be
determined

Homogenous problem: F(x)=0
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Presenter Notes
Presentation Notes
We will sometimes want to generalize even further with an “inhomogeneous” term such as an applied force.


Examples of Sturm-Liouville eigenvalue equations --

(—ir(x)di +v(x)— Aa(x)) p(x)=0

dx X

Bessel functions: 0<x <

T(x)=—x v(ix)=x o(x)= 1 A=v: p(x)=J,(x)
X

Legendre functions: —-1<x<1
T(x)z—(l—xz) v(x)=0 o(x)=1 A=I(l+1) ¢@(x)=PB(x)
Fourier functions: 0<x<1

r(x)=1 v(x)=0 o(x)=1 A=n'm" @(x)=sin(nrx)


Presenter Notes
Presentation Notes
For now, we will focus on eigenvalues of the homogeneous equations.


Solution methods of Sturm-Liouville equations
(assume all functions a(wd gonstagts are real):

Homogenous problem: | ——7(x)—+v(x)— /Ia(x)j% (x)=0
dx dx

Inhomogenous problem : (— 4 7(x) 4 +v(x)— /Ia(x)j¢(x) = F(x)
dx dx

Eigenfunctions :
d d
(— d—T(X)— + V(x)]fn (x) = 4,0(x)f,(x)
X dx
Orthogonality of eigenfunctions: j ba(x) f.(x)f (x)dx=0_N ,

where N, = [ o(x)(f,(x)) dx.
Completeness of eigenfunctions:

O'(x)zﬁ’(x])\{”(x') = 5(x—x')

n

This leads to: =»



Presenter Notes
Presentation Notes
The eigenfunctions of these equations have very useful properties such as completeness.


®
Comment on orthogonality of eigenfunctions

(d . d Ve
T W YL@ = 40001, ()

( d d \ ;
_ — 4 —
wr 7(x) o V(X)/ fn(x)=4,0(x)],(x)

fm(x)(—%f(X)%w(X)jﬂ(X)—ﬂ(X)(—dixT(X)%W(X)jfm(X)
— (4, = 4,0 () £,(x).f, (%)

(fm ()Y ;ff) f @ Z)(CX)

A j=(zn = 3,) o) £,(0) £, ()


Presenter Notes
Presentation Notes
Orthogonality of eigenfunctions.


®
Comment on orthogonality of eigenfunctions -- continued

df (X)

L (x)] (4,

__(f (x)z'(x) ﬂvm)a(x),fn ()C)fm(X)

Now consider integrating both sides of the equation in the interval
a<x<bh:

df (%)

@) L (x)]

(f (1)7(x) =(4, = 4,) [ dxo ()£, (x) £, (x)

4+

Vanishes for various boundary conditions
at x=a and x=b
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Presenter Notes
Presentation Notes
Orthogonality continued.


Comment on orthogonality of eigenfunctions -- continued

df (X) df,, (X)j

dx

= 1, (0)7(x)

[f ()7 (x) = (4, = 4,) [ dxo(x) £, () £,,(x)

a

Possible boundary values for Sturm-Liouville equations:

1. f,.(@)=1,0b)=0
2. 2L
dx

a

3.f.(a)=f,(b) and

df (X)

=0

b

dfm (a) _4d/,,(b)

dx dx

In any of these cases, we can conclude that:

j dxo(x) f.(x) f.(x) =0 for A # 1


Presenter Notes
Presentation Notes
Orthogonality continued.


~ Comment on “‘completeness”

It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f (x)

h(x)= > C,f.(x),

where C :N% [ o (em £, ('

These ideas lead to the notion that the set of
eigenfunctions 7 (x) form a "~ "complete"” set in the sense
of ““spanning" the space of all functions in the interval
a < x <b, as summarized by the statement:

o(x)y /» (xj)vﬂ () _ s(x—x).

n



Presenter Notes
Presentation Notes
Notion of completeness.


~ Comment on “completeness” -- continued
For an arbitrary function: h(x) = ZCn f, (x),

where cnzNL [[o(en f,(xhdx' with N, = [ o)(£, ()

Consider the squared error of the expansion:

e’ = j dxa(x)(h(x) ->c, fn(x)j

e* can be minimized:

862 b

~ =0= —2_! dxc)'(x)(h(x) - ancnfn (x)jfm (x)

m

=C = Nim j dxo (x)h(x) £, (x)


Presenter Notes
Presentation Notes
Notion of completeness and practical applications.


Knowing that A(x) = ZCn f,(x), where C = NL Jj o(xYa(x")f (x"dx',

1

= h(x) = Z([V [ o()h(x) s, (x')dx'jfnoc)j

n

b
We also know that fora < x <b, h(x)= Jé(x —x)h(x")

» O'(X')Z ﬁa(x]'\)fﬁa(x) _ 5(X—X').

n

This is the completeness property of the eigenfunctions. How
many terms are needed for the expansion, depends on both the
function h(x) and on the eigenfunctions £ (x).



Example: Suppose 0<x<1land —

Now

0.05

d” f,(x)

s =n'm f,(x)
X

[, (x) = sin(nxx) N ==

consider  A(x) = x(1—x)

1 fi dd
C,6 = ZJh(x "sin(nzx"dx'=< n’ 7’ orno
0

0 for n even

€ 1term

1o L 14
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“Variational approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f,(x). When it is not
possible to find the “exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the

~S ~/

function ZO ) <%Zv AY ltlv> | S(x) = _%r(x)a+\/(x)
<h o h>

where #(x) is a variable function which satisfies the
correct boundary values. The ""proof" of this inequality is
based on the notion that#(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):

h(x) = ZC f.(x), where the coefficients C, can be

assumed to be real.


Presenter Notes
Presentation Notes
A very useful property of eigenfunctions .


Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that
S()h(x)=85(x)) C,[,(x)= 3. C,2,0(x)f,(x)
It follows that: n n

(S|} = [ h(x)S)h(x)dx =Y (C, P N,A,.
It also follows that:

(h|o|i)= jj}?(x)a(x)ii(x)dx =Y, P N,

(i|s|) ) D IC,IP N,4,

n

liloli) ~ TGN,

n

Therefore



Presenter Notes
Presentation Notes
Proof of theorem continued.


Rayleigh-Ritz method of estimating the lowest eigenvalue

(h|S|h)
Jy< L
(hlolh)
d2
Example: ] f,(x)=Af (x) withf (0)=f (a)=0
X
trial function f_. (x)=x(x—a)
Exact value of 4, = ﬂj = 9'8696? 4404
a a
d2
<X(Cl —X)‘ —dxz‘X(Cl —X)> - 10

Raleigh-Ritz estimate: =
aleigh-Ritz estimate <x(a—x)‘x(a—x)> "


Presenter Notes
Presentation Notes
Example of the Rayleigh Ritz method.


®
A generally useful solution method -- Green'’s function approach

Suppose that we can find a Green's function defined as follows:

(_if<x>—+v<x> za(x)jG(xﬂ 5(x—x)

dx dx
Completeness of eigenfunctions:

Zf(x)f(x) 5(r—x)

I’l

Recall:

In terms of eigenfunctions:

(_if(x)_-FV(X) )Z,G(x)jG ()C X) (7 )an(xj)vfn(xv)

dx dx

n

=G, ) = R LOLEIN,



Presenter Notes
Presentation Notes
The following slides present solution methods for differential equations involving the use of eigenvalues.


.

Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:

(_im)_w(x) ﬂa(x)jeo(x) F(x)

dx dx
Green's function :

(—ir(x)—ﬂ(x} za(x)jG (x.x') = 5(x—x)

dx dx

Formal solution:

@, (x) = (0/10(\36) T J‘Gg (x,x")VF(x")dx'

Solution to homogeneous problem


Presenter Notes
Presentation Notes
From a knowledge of the Green’s function we can find solutions of related inhomogeneous equations.


Example Sturm-Liouville problem:
Example: 7(x)=1; o(x)=1, v(x)=0; a=0 and b=L
A=1; F(x)=F, sin(%j

Inhomogenous equation :

d’ [ mx
(— P 1j¢(x) =F, sm(fj


Presenter Notes
Presentation Notes
Example.


Eigenvalue equation :

(— j—jf (1) = A, f,(x)
X

Eigenfunctions Eigenvalues:

. [ nmx _ﬂz
/. (x)= —sm( 7 j ln—(Lj

Completeness of eigenfunctions:

o(x )Zf(x)f(x) 5(x—x')

n

In this example: T Z sin(%j sin( n7sz j =5(x —x")


Presenter Notes
Presentation Notes
Solution using eigenfunctions.


Green's function :

(— a 7(x) a +v(x) — /la(x)le (x,x') = 5(x — x')
dx dx

Green's function for the example:

' sin(mj sin(nﬂx'
) = S LAY, 29\ L) AL
n no n (MJ _1


Presenter Notes
Presentation Notes
Continued.


Using Green's function to solve inhomogenous equation :

(—%—I)ﬂx) F, sm(mj

7o
o(x) = ¢O(x)+J'G(x x')F, sin (Tj

= ¢,(x) +%Zn: (n;z f B _](‘:sm( )FO sin(%'jdx'

Fy [ ™
=@, (x)+ E 2_ sm(Lj
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Presenter Notes
Presentation Notes
In this case, the solution simplifies.


.

Alternate Green's function method :

63 =, (e, x)

(_d_z_ljgm:o = g, (x)=sin(x); g, (x)=sin(Z—x);

W =g,(x) dgc;)fx) —g.(x) dg;)gx) = sin(L — x)cos(x)+sin(x)cos(L — x)

= sin(L)

P(x) =g, (x)+ sm(L x) j sin(x') F, sm( 7 jdx

sm(x)
sin(L) <

$() = gy (x) + —0 sin(ﬁ]

B

_I_

j sin(L —x")F, sm( 7 jdx’



Presenter Notes
Presentation Notes
Another method of finding a Green’s function.


®
General method of constructing Green'’s functions using

homogeneous solution
Green's function :

(— 4 7(x) 4 +v(x)— /la(x)le (x,x') = 5(x — x')
dx dx

Two homogeneous solutions

.
_if(x)iJrv(x)_,lo-(x)jgi(x):O for i=a,b
\ dx dx

et

1

Gﬂ(xrx') — Wga(x<)gb(x>)


Presenter Notes
Presentation Notes
Green’s function based on homogeneous solutions (not eigenfuntions).


For ¢ —>0:

if:dx(—ir(x)% +v(x) — /Ia(x)j G,(x,x") = I dxé(x — x')

dx

d d) 1
dx| —1(x)— |—g.(x x,)=1
j (dx <>dijga< 8, (x.)

" _ 7(x")

g.(x.)g, (%)jlﬂe W

_r(x)( d

' i "N _ ' i '
W\ dx (ga(x)dxgb(X) gb(X)dxga(X)j

=W = r(x')(ga(x')%gb(x') - gb(x')%ga(x')j

Note -- W (Wronskian) 1s constant, since

aw

=0.
dx'
— Useful Green's function construction in one dimension:

1

Gxi(xﬂx') — Wga(x<)gb(x>)


Presenter Notes
Presentation Notes
Some details.


(_Lm—w(x) za(x)jco(x) F(x)

dx dx

Green's function solution:

0,(1)= 0,0 (0) + [ G, (x.xVF (x')dx’

=,y () + £ jg (O '+ £ j g, (x)F (x )’


Presenter Notes
Presentation Notes
More details.      To be continued.
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