PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 22 — Chap. 7 (F&W)

Solutions of differential equations

1. Green’s function solution methods based on
eigenfunction expansions

2. Green’s function solution methods based on
solutions of the homogeneous equations
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Presenter Notes
Presentation Notes
In this lecture, we will continue our discussion of one dimensional ordinary differential equations.


19 Mon, 10/03/2022 |Chap. 7 Sturm-Liouville equations #19 10/05/2022
2 Wed, 10/05/2022 Chap. 7 Sturm-Liouville equations
21 Fri, 10/07/2022 Chap. 1-4,6-7 |Review
_Mon, 1011072022 Noclass ~ [Take home exam
[ | Wed, 10/12/2022No class ~ Take home exam
[ | Fri, 10142022 Noclass  |Fall break
ﬁMon, 1011712022 |Chap. 7 Green's function methods for one-dimensional Sturm-Liouville equations #16 1011912022
3 Wed, 10/19/2022 Chap. 7 Fourier and other transform methods
PHY 711 -- Assignment #16
Oct. 17, 2022

Continue reading Chapter 7 in Fetter & Walecka.

Consider the example presented in the last two slides of Lecture 22, where a one-dimensional Poisson equation was
solved using a Green's function constructed from the corresponding homogeneous solutions. Verify the results on this slide
and check that the resultant potential ®(x) satisfies the particular Poisson equation for x <-a,-a<x<a, and forx 2 a.
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Presenter Notes
Presentation Notes
The schedule continues to cover material in Chap. 7


Your questions —

From Sam -- | am still not quite understanding how the
Rayleigh Ritz method works. It seems that after the
cancellations of the expectation values on top and bottom,
you should be left with the sum of lambda n over all n, and
while that is greater than lambda O, | don't get how it
approximates it.
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Review — Sturm-Liouville equations defined over a range of x.

Homogenous problem: (—i 7(X) 4 +v(x)— /Ia(x)j @,(x)=0
dx dx
d d
Inhomogenous problem: (—— 7(X) T +v(x) — /Ia(x)j o(x)=F(x)
X X

Eigenfunctions:

(_dif(x)i+ v(X))fn(x) = 4,0(x)/,(x)
X dx

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.


Presenter Notes
Presentation Notes
Review of the class problems considered.


Eigenvalues and eigenfunctions of Sturm-Liouville equations
Inthe domain a<x<b:

(—irmi + v(x)jfnm = 4 o(x)f,(x)

dx dx
Alternative boundary conditions; 1. f (a)= f (b)=0
or 2. 7(x) 4 (%) =7(x) 4 (%) =0
dx |, dx |,

or3. f (a)= f,(b) and df,(a) _df,(b)
Properties: dx dx

Figenvalues A are real

nm n’

Eigenfunctions are orthogonal: j b o(x)f (x)f, (x)dx=0, N

where N, = [ o(x)(f, (x)/dx.


Presenter Notes
Presentation Notes
General properties.


“Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f, (x). When it is not
possible to find the ~“exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the

function e <h: S }E> | S(x) = _%r(x)aﬂz(x)
(h]o]h)

where #(x) is a variable function which satisfies the
correct boundary values. The "proof” of this inequality is
based on the notion that #(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):

h(x) = ZC f.(x), where the coefficients C, can be

assumed to be real.


Presenter Notes
Presentation Notes
Comment on the Raleigh-Ritz approximation for the lowest eigenvalues.


Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that

S()h(x)=8(x)).C,f,(x) =Y C,A,0(x)f,(x).
It follows that: ! !

(h|S|) = [ h(0)S()h(x)dx =Y C, P N,A,
It also follows that: ’

(h|o|i)= jjh‘(x)a(x)ﬁ(x)dx =3C,F N,

s >IC,[PN,4,

e > 2
Wolh) — YICEN,

n

Therefore g


Presenter Notes
Presentation Notes
Proof of the  Rayleigh-Ritz theorem.


~ ~ 2
Some additional comments -- <h|5|h> _ ;'Cn "N, v
(holh) — 20C, PN,

AN R x
<~ > => f.A, where ) f,=1
<h O h> n=0 n=0
For the case of only two non-trivial eigenvalues:
(h|s|h)
<~ ~ :]{Oﬂ“o_i_jplﬂ'l:ﬂ“o_'_(ﬂ'l_ﬂ‘o)fl
hlolh)

<E\S\E>

el ]‘_, 7

0 1
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Rayleigh-Ritz method of estimating the lowest eigenvalue

S<i€si£>
(i[o]h)

Example: — 5—22 f,(x)=Af (x) withf (0)=f (a)=0
X

trial function £, (x) = x(x —a)
2
Exact value of 4, = 7. = 9-869604404
a
x(a-x)) |,

a
aleigh-Ri1tz estimate: <x(a—x)‘x(a—x)> =



Presenter Notes
Presentation Notes
Review of example from last lecture.


.

ﬂ“trial (g) -

Rayleigh-Ritz method of estimating the lowest eigenvalue

1< <h S h> Another example — this time
0~ <i,' o ;}>’ with a variable parameter
Example: d 4 1ux) +Gx*f(x)=A f.(x) withf, (—0)= f, (0)=0

dx’

trial function f_ (x)=e*

ria S ria G
Raleigh-Ritz estimate: éft 151/ 1> =g+—=1_,(2)
trial

i O-}f';rial>_g 4g

1.4

\/5 1.2_,

1.1
1.0 ‘ ————— — A
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
g/ VG Note that for differential equation of the
1 Schoedinger equation of the harmonic oscillator:
8o =—VG ﬁ“trial(go): NG _ mw 2m ho
2 G - ﬂ/ E = EO — 7

7 trial 72 0
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Presenter Notes
Presentation Notes
Another example.


Qecap -- Rayleigh-Ritz method of estimating the lowest eigenvalue

Example from Schroedinger equation for one-dimensional harmonic oscillator:

D L (=B f () withf (o) = f,(0) =0

2m  dx’ 2

Trial function £ (x) = e s

S| £ 2 2 2 /32
Raleigh-Ritz estimate: <ﬁnal |fmal> - [8 + 22 - )EE ()

trial
< trial G|ftrial> 2m 4g

1

g, :’%‘) Eu(80) = heo @ Exact answer

Do you think that there is a reason for getting the correct
answer from this method?

a. Chance only

b. Skill


Presenter Notes
Presentation Notes
In this case, the minimization process yield’s the exact answer.


.

Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:

(—ir(x)—w(x) M(X)jco(x) F(x)

dx dx
Green's function :

(_ifu)—w(x) za(x)jG (x.x') = 5(x—x)

dx dx

Formal solution:

@,(x) = (010(\36) + .[Gﬁ (x,x")F(x")dx'

Solution to homogeneous problem


Presenter Notes
Presentation Notes
From a knowledge of the Green’s function we can find solutions of related inhomogeneous equations.


Formal solution:

@, (X)=@,,(x)+ jGﬁ (x,x")F(x")dx'

Solution to homogeneous problem

What is the homogeneous equation psi_0(x)?

Homogenous problem:

(—iax)diw(x)—za<x>j¢w<x> -0

dx X

In this lecture, we will discuss several methods of
finding this Green’s function. This topic will also
appear in PHY 712



How do we arrive at the formal solution?

Formal solution:

0, (X) = 0,0 (X)+ [ G, (xr, x)F (x)dx’

Note that this form satisfies the inhomogenous equation

Define S(x)= _4 7(X) di +v(x)—Ao(x)

X X

S(0)@, () = S(X)P;(x) + S(x) [ Gox, X F (x")dlx

S(x)e, (x) = 0 + j S(x —x"F(x"dx'= F(x)



®
Using complete set of eigenfunctions to form Green'’s function --

Suppose that we can find a Green's function defined as follows:

(_Lm—w(x) za(x)jG (6,2 =5 (x—x)

dx dx

Completeness of eigenfunctions:

Zf(x)f(x) 5(x x)

n

In terms of elgenfunctlons

(_if(x)_-FV(X) ﬂG(x)jG (X X) G )Z ﬁ?(x])\/fn(x')

Recall:

dx dx

n

= G, (x,x") = Z ﬁ(x)f(_x}? /N, By construction
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Presenter Notes
Presentation Notes
The following slides present solution methods for differential equations involving the use of eigenvalues.


S
Example Sturm-Liouville problem:

Example: (x)=1, o(x)=1, v(x)=0; a=0 and b=L

A=1 F(x):FOsin(%j

Inhomogenous equation:

d’ . [ 7Tx
(_ﬁ - 1] @(x) = F,sin (Tj


Presenter Notes
Presentation Notes
Example.


Eigenvalue equation :

[— j—jf (1) = A,£,(x)
X

Eigenfunctions Eigenvalues :

£ (x) = %sin(%j j, =(%j

Completeness of eigenfunctions:

() 2D = 6 (x-x)

n

: 2 . . !
In this example: — E sin| 222 sm(nﬂx j:
L5 L L


Presenter Notes
Presentation Notes
Solution using eigenfunctions appropriate for this example.


. . . 2 . (nzx) . (nxx'
In reality, for finite summation — ) sin (—j sm( j =0 (x —X ')

x=1/2, L=1

100'_ n

80-
60-
40-
20-

0.8 1
x>

'}UUUWuvvvw-—‘ R el

—10-

10/17/2022 PHY 711 Fall 2022 -- Lecture 22 18



Green's function :

(— a 7(x) a +v(x)— /Ia(x)le (x,x') = 5(x — x')
dx dx

Green's function for the example:

' sin(mj sin(nﬂx'
) = S LAY, 29\ L) AL
n no n (MJ _1


Presenter Notes
Presentation Notes
Continued.


.

Using Green's function to solve inhomogenous equation:

2
(_5_ — IJ @(x) = F,sin ( ﬂij with boundary values @(0)=¢(L)=0
X

P(x) = ¢O(x)+IG(x x")F, sm(ﬂLx jdx'

nixx
Sin(j / ' '
o) = 0y (1) + 25 = [sin (ﬂ)ﬁ‘o sin (QJ dx’

EOE

L

P(x) = gy (x) + —8 sin(@]


Presenter Notes
Presentation Notes
In this case, the solution simplifies.


Another method of constructing Green'’s functions -- using
two solutions to the homogeneous problem

Green's function :

(— a 7(x) 4 +v(x) — /Ia(x)le (x,x'") = 5(x — x')
dx dx

Two homogeneous solutions

(_if(x)diJrv(x)—ﬁa(x)jgl.(x):O for i=a,b

dx X

1

Let G, (x.x) =7 8,(x.)g,(x.)

where W = r(x')(ga (x')%gb(x') _gb(x')%ga (x')j


Presenter Notes
Presentation Notes
Green’s function based on homogeneous solutions (not eigenfuntions).


@ome detalils:
For ¢ —>0:

:j:dx(—ir(x)% +v(x) — //LJ(x)jG/I (x,x") = :j:dx5(x — x')

dx

x'+e d d
x'[e dx(_ET(X) Ej%gcz (x<)gb (x>) =1

_T(x)( d
W\ dx

x'+e B Z'(x')
g.(x.)g, O@)ﬂxve =

d d
(ga(X')agb(X') —gb(x')aga(x')j

:>W=r(x')(ga(x')%gb(x')_gb(x')%g“(x')j AW

Note -- W (Wronskian) 1s constant, since vl 0.
X

— Useful Green's function construction in one dimension:

1

le(xﬂx') — Wga(x<)gb(x>)


Presenter Notes
Presentation Notes
Some details.     


(_Lm—w(x) za(x)jco(x) F(x)

dx dx

Green's function solution:

0,(x) = 0,0 (x)+ | G, (x, ¥ )F (x)dx'

0.0+ £ [ P £ [, (I (e

Note that the integral has to be performed in two parts.
While the eigenfunction expansion method can be
generalized to 2 and 3 dimensions, this method only works

for one dimension.


Presenter Notes
Presentation Notes
More details.      


Example from previous discussion:

2
[—% — lj @(x) = F,sin (%) with boundary values @(0)=¢@(L)=0
X

Using: G(x,x") =Wga (x<)gb (x>) for 0<x<L
(—d—z —~ ljgi (x)=0 = g, (x)=sin(x); g, (x)=sin(L-x);

W=g, (x)a@g;_ix) - g, (x)M =sin(L — x)cos(x)+sin(x)cos(L —x)

dx
=sin(L)

P(x) = @y (x) + Sin.(L — x) jsin(x')Fo sin (Ej dx'
sin( L L

sm(x)
sin(L) <,

_|_

_[sm(L x")VF, sm( 7 jdx

- +
P(x) =@, (x) T 1 L But, hurray! Same result as before.
s

Iy sin(ﬂj (Actually the algebra is painful).


Presenter Notes
Presentation Notes
Another method of finding a Green’s function.


Another example --

2
%q)( x)=—p(x)/¢, electrostatic potential for charge density p(x)

Homogeneous equation:

d2

?ga,b(x) =0

Letg,()=x  g,(x)=1
Wronskian:

do, (x do (x
W:ga(x) gb( )_gb(x) ga( ):_1
dx dx
Green's function:

G(x,x")=—x_

D(x) = CI)O(x)Jrl j dx'x'p(x')+1jdx'p(x')
60 —0 60 X


Presenter Notes
Presentation Notes
Another example, this time taken from electrostatics.


Example -- continued

2
%(‘D( x)=—p(x)/¢, electrostatic potential for charge density p(x)

D(x) = D, (x) +— [ dx'x p(x') += [ dx p(x)
6O —0 60 X

-

0 x<—a
Suppose  p(x)=3p,x/a —a<x<a
0 xX>a
0 x<—a

3 2 3
(D(x)=®0(x)+<p0(a X —xj —a<x<a



Presenter Notes
Presentation Notes
Solutions for a particular charge distribution.


0 x<—a
3
d x —a<x<a
2 6
2
— P, xX2a
| 3¢,
2-

10/17/2022
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Presenter Notes
Presentation Notes
Plot of the change distribution and of the electrostatic potential.
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