PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 23: Chap. 7
& App. A-D (F&W)

Generalization of the one dimensional wave equation =
various mathematical problems and techniques including:
1. Fourier transforms
|:> 2. Laplace transforms
3. Complex variables

4. Contour integrals
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Presenter Notes
Presentation Notes
In this lecture we will start to cover various useful mathematical techniques.


10/19/2022

PHYsICS

CoLLoQuiuM

A conspicuous feature of ecological systems is the fact that
conditions are rarely the same across space and time. An
enduring challenge is to understand how heterogeneous
conditions affect individuals, populations, and species, and
use that understanding to make predictions. Mathematical
models in ecology traditionally represent environmental
variability as white noise, that is, independent random
perturbations to dynamics that occur under constant
conditions. But such a characterization often limits our
understanding of potentially relevant biological processes. In
this talk, | will give two examples of how environmental noise
interacts with population growth processes to yield novel,
emergent phenomena. The first example illustrates how
changing environments present opportunities for multiple
species to coexist despite competition between them. The
second example illustrates how spatio-temporal heterogeneity
accelerates population growth. | will demonstrate how local
SARS-CoV-2 mitigation policies blind to this effect might
inadvertently exacerbate viral spread. Throughout, |
emphasize how environmental noise interacts with
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Mon, 10/03/2022 (Chap. 7 Sturm-Liouville equations #15 10/05/2022

Wed, 10/05/2022 |Chap. 7 Sturm-Liouville equations

- | o w

Fri, 10/07/2022 Chap. 1-4,6-7 |Review

Mon, 10/10/2022 |No class Take home exam

Wed, 10/12/2022 |No class Take home exam

Fri, 10/14/2022 |No class Fall break

2 Mon, 10/17/2022 |Chap. 7 Green's function methods for one-dimensional Sturm-Liouville equations #16 10/19/2022
23 \Wed, 10/19/2022 (Chap. 7 Fourier and other transform methods #17 10/21/2022
24 Fri, 10/21/2022 (Chap. 7 Complex variables and contour integration #18 10/24/2022

PHY 711 -- Assignment #17
Oct. 19, 2022

Continue reading Chapter 7 in Fetter & Walecka.

1. Consider the function f(x) = x? (1-x) in the interval 0 < x < 1. Find the coefficients Ap of the Fourier series based on the
terms sin( n m x). Extra credit: Plot f(x) and the Fourier series including 3 terms.
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Presenter Notes
Presentation Notes
This is the schedule.    You will receive an email containing the mid term exam.    It will be due next Monday.


Review — Sturm-Liouville equations defined over a range of x.

For x <x<x,

Homogenous problem: (—i 7(X) di +v(x) - /Ia(x)j @,(x)=0
X X
d d
Inhomogenous problem: —d—r(x)d— +v(x)—Ao(x) |o(x)=F(x)
X X

Eigenfunctions:
(‘%m%wxﬂm)=zna<x>fn<x>

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.


Presenter Notes
Presentation Notes
Review of the Sturm Liouville equations.


@Formal statement of the completeness of eigenfunctions:

Zf(x)f(x) 5(x x) where NnETa’xa(x)(fn(x))2

This means that within the interval x, <x<x,,

an arbitrary function /(x) can be expanded: /(x) = ZAn f, (x).

Example for 7(x) =1=0o(x) and v(x) =0 with
O0<x<Land f (0)=0=f (L)

(—dirmi + v(x)jfnm — Ao f(x) = -
X dx

d’f,(x) _
dx2 o ﬂ“njfn (x

In this case, the normalized eigenfunctions are

. [ nmx _(nzm ’ _
f.(x)= —sm(Tj A —( 7 j n=12,...


Presenter Notes
Presentation Notes
Specializing to the simplest case.
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Joseph Fourier

Jean-Baptiste Joseph Fourier

Born 21 March 1768

Auxerre, Burgundy, Kingdom
of France (now in Yonne,
France)

Died 16 May 1830 (aged 62)
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Special case: 7(x)=1=0(x) v(x)=0

dzf(x) Af(x) for 0 <x<a, withf (0)=f (a)=0

£.(x0) = | sin (@j A, = (ﬂj
a a a

Fourier series representation of function 4(x) in the interval 0<x<a:

h(x) = ZA \Psm(”’”j
a
\/7_“dx h(x") sm(nﬂxj

*Note that 1f /2(x) does not vanish at x = 0 and x = a, the more general

: : s o o >
expression applies: h(x) = Z A \/: Sm(”lﬂx j N Z B \/: cos(mmj
n=1 a a =0 a a

(with some restrictions).




Example

h(x) = sinh(x) =27 sinh(l)(smyz X) _2sin(27x)

+1 4r’+1

‘*-—(—IVnShmnﬂx)+“)

n'rt+1
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Example h(x)=x(-x)

:Z A, sin(nzx) A =177 for n odd
n=l1

. 0 for n even

n=1.2

0 02 04 x 06 08 1
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Fourier series representation of function 4(x) in the interval 0<x<a:

h(x) = ZA \Psin(”zxj with A4 :\/%Idx' h(x") sin(m;x'j

Can show that the series converges provided that 4(x) 1s

piecewise continuous.

Note that this analysis can also apply to time dependent
functions. In the remainder of the lecture, we will consider
time dependent functions.

Xt a—>T 0 <tr<T — > —=w

h(t) = g/ln\/%sin(a)nt) A = \/%J:dt' h(t'") sin(ew,t')

Note that for this finite time range, Fourier series is

discrete in frequency and continuous in time.
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Generalization to infinite range -- Fourier transforms
A useful identity

J‘dt (=) =276 (0 — )

Note that

L . 21 — T

far oo 2l0ma)T]
-T w — a)() T—oo

20

10

-10

-20
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Definition of Fourier Transform for a function f(¢):

() = Ta’a) F(w)e™

Backward transform :

Fla)=>— j dtfi1)

Check :

f@)= Tda) [i Tdt' ft') e"a’f'jeia»
f(f)ZTdt'f(t ( Idme ttj _‘.a’tf(t)ﬁ(t 5

Note: The location of the 2r factor varies among texts.



Properties of Fourier transforms -- Parseval's theorem:

zdf(f(t))* 1 =2nzdw (F(@)) F(w)

Check: Idt OWIE j dt[[ | doF (o } [ do'F(a)e J
=Tda)F jda)F jdze“’>
- [ doF (o) | do'F () 2750 - o)
=27 ojo doF ()F (o)

Note that for an infinite time range, the Fourier transform

is continuous in both time and frequency.
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Use of Fourier transforms to solve wave equation

o'u  ,0u B

Wave equationi ——-c"—=0
1 ot ox’
Suppose  u(x,t)=e " F(x,w) where F(x,w) satisfies the equation:
OrF 2 5 More generally:
(’;’ ) _ 2 Fx,0) =- EF(x,0) e
Ox ¢ u(x.t) = [ doF (x.w)k ™
T —00

Further assume that fixed boundary conditions apply: 0<x < L
with F(0,0)=0 and F(L,w)=0
Forn=12,3---

F (x,0) = sin(@j k—>k = T _
L L C

(eikn (x-et) _ ik, (x+ct))

(eiknx . e—iknx )
u(x,t)=e " sin(k x)=e "

2i 2i



Use of Fourier transforms to solve wave equation -- continued
ot’ Ox”
Using superposition: Suppose u(x,t) = ZAne_ia’"’E (x,m,)

=0

= 2
7 N ~
9, ,é(;,a)n) :_i);t F(X,C()n) = —k}f F(X,a)n)

For F(xa))—sin(mrxj k—k = G
L L ¢

— M(X, Z) — ZAne—icont Sin(knx) _ Z A,,f e—ia)nt (eiknx . e_ik”x)

— 2

—Z 21( (x—ct) o (Ha))Ef(x—Cl‘)-l-g(X-l—Cl‘)

Note that at thls point, we do not know the coefficients A, ;
however, it clear that the solutions are consistent with
D’Alembert’s analysis of the wave equation.

10/19/2022 PHY 711 Fall 2022-- Lecture 23 15



Now consider the Fourier transform for a time periodic function:

Suppose f(t+nT)= f(t) forany integer n

F(Cf))——jdl‘f(z)e’a)t :_Z(J'dtf(t) io(t+nT) j

Note that:
i "l = Q) i 5(w—-1Q), where Q =277Z
Details:

G sin((N+%)a)T)

ma)T 1 ma)T 1
Z e 111 Z e 111 Sln(%a)’r)



sin((N+%)a)T)

sin(%a)T)
ﬂ i 40
30 ﬂ 2 d 4
201 5 — WF—
| T T
10
HIAAAAAAAAAAAA .-.-.',‘illh ............................. M HIAAAAAAAAAAAAAAAN I HAAAAAAAAAAMA
lf li!”l | ‘1 1"
w=0 a
Note that: w —
Ze’”“’T:QZ5(a)—VQ), where QE%Z
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sin((N + %)a)T)

Geometric summation: Z " = sin( 1 a)T)

. Sin((NJr%)a)T) 2725 S(wT —vOT _27 o <2

Nlil}o Sin(%a)T) = ﬁzvl (a) — )—72 (50— )
= inwl N 27[

= Ye" =Y 8(w-1Q), where =

n=—0o0 VY =—00

V_—OO

= (@‘—f i fige™ =5 3 Q5(0-102 [f dtf(t)elwtj

Thus, for a time periodic function

() = j do F(w) e™ = Z F(rQ)e™,

Y=—00

where F(1Q)= ?jdt ft)e"™



Suppose:

0.8-
0.6-

Example:
t—nT

f ()=

F(1)= T dt=F'(-Q)

2mvt j
T

fiy=5-=
T -

04
0.2-

fornTStS(nJrl)T; n

27TV

__t for v=12,3... F(O):

..—3,-2,-1,0,1,2,3...

1
2

10/19/2022
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Summary —

Definition of Fourier Transform for a function f'(¢) :

f() = T do F(w) e

Backward transform:

F(w) = i j dt f(t) e

Find discrete frequencies o for functions f(t) over finite time
domain of for functions f(t) which are periodic: f(t)=f(t+nT)

=>Numerically, there is an advantage of tabulating double
discrete Fourier transforms (discrete in w and in ¢).



Example:

Suppose: f(t) = Z ~(+nT) Z F(1Q)e ™
a\/7 n=-x© Y=—00
where Q)= 27” and F (VQ) _ 2Le_azvzgz /4
/N Vo /N
[\ [\ AR

W )\ SR I\

[\ [\ [\

\ | / |/ [ N1/ \

T
N
S}

3 VQ 10



Continued: f(¢)= : i o () Ia i Ja (‘/Q)e-mf

Note: "~
C(0) N 272. y
—{v£E2) o=" o
o 1)~ F(WQ™
T (@) V:Z_;M (Q)e
because F(v'Q)~0
v — for |v'|> M

-10 -5 S 5 “10 0 -3
v=-M v=M v —



Constructed frequency periodic function --

Envelope of frequency function F()

-30 -20 -10 0 10 20 30

o~

Falsely periodic frequency function F(w)
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Thus, for any periodic function: f(z) = Z F (VQ)Q‘W

Now suppose that the transformed function 1s bounded;

‘F(Vfl)‘ <¢ for |v|2N

Define a periodic transform function

F(WQ+oW)=F(\Q) for o =..—3,-2,-1,0,1,2,3... where W =((2N +1)Q)

Recall that: i "l = Q) i o (a) — VQ), where = 277[
f(t)= i F(Q)e ™ = i i ﬁ(vQ)e”QfZa(r M j
B (2N+1)QV:_N p 2N +1

For ¢ — m 7. :}f( m1 j: i F(ng)e—i27rvm/(2N+l)
IN+1 2N+1) =,
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Falsely discretized time function £ (¢)
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Doubly periodic functions

[ — i
2N +1
e 1 o 27vi/(2N+1)
— Fe—l v +
“ 2N+1ZN v

N
o 7 i2mvu/(2N+1)
b, = z e



More convenient notation

e I & = —i27vi/ M
p = M Fve #
v=0
~~ M ~~
FV _ Zflueﬂm/y/M
u=0
Note that for W =e"**'"
E,=f W+ fwl+ W+ 0+
E=fWo+ W + W+ W +
E,=f WO+ fW+ W+ fW° +



Note that for W = ¢'**""
= WO+ WO W O+
fWO + W+ LW SR+
:fOWO + W W O+

“qz

However, W" = (eiz”/ M YI =1

and WM — (ei27z/M y‘/@ — _1

Cooley-Tukey algorithm: J. W. Cooley and J. W. Tukey, “An
algorithm for machine calculation of complex Fourier
series” Math. Computation 19, 297-301 (1965)



http://www.fftw.orqg/

Download GitHub  Mailing List Benchmark Features Documentation FAQ Links Feedback

Introduction

FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and
complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). We believe that FFTW, which is free software, should
become the FFT library of choice for most applications.

The latest official release of FFTW is version 3.3.10, available from our download page. Version 3.3 introduced support for the AVX x86 extensions, a
distributed-memory implementation on top of MPI, and a Fortran 2003 APL Version 3.3.1 introduced support for the ARM Neon extensions. See the release
notes for more information.

The FFTW package was developed at MIT by Matteo Frigo and Steven G. Johnson.

Our benchmarks, performed on on a variety of platforms, show that FFTW's performance is typically superior to that of other publicly available FFT
software, and 1s even competitive with vendor-tuned codes. In contrast to vendor-tuned codes, however, FFTW's performance is portable: the same program
will perform well on most architectures without modification. Hence the name, "FFTW.," which stands for the somewhat whimsical title of "Fastest Fourier
Transform in the West."

Subscribe to the fftw-announce mailing list to receive release announcements (or use the web feed ).

10/19/2022 PHY 711 Fall 2022-- Lecture 23 29


http://www.fftw.org/

Fourier series and Fourier transforms are useful for solving
and analyzing a wide variety of functions, also beyond the

Sturm-Liouville context.

In the next several slides we will consider a related concept
— the Laplace transform.


Presenter Notes
Presentation Notes
We now consider another technique that is uses to solve initial value equations.



.

Laplace transforms

Laplace transforms can be used to solve initial value problems. The Laplace transform of
a function o(z) is defined as

Lo(p) = /D " e () 24)

Assuming that ¢(z) is well-behaved in the interval (0 < z < oo, the following properties
are useful:

Laojaz(p) = —0(0) + pLo(p), (25)

and

do(0)

Loz (p) = P po(0) +p*Le(p)- (26)
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Presenter Notes
Presentation Notes
A quick introduction to Laplace transform methods.


These identities allow us to turn a differential equation for ¢(z) into an algebraic equation
for L£s(p). We then need to perform an inverse Laplace transform to find o(z).

For illustration, we will consider a simple example with 7(z) =1, a(z) =1, A = 0. The
differential equation then becomes

d*o(x)

dz?

= F(z). (27)

where we will take the initial conditions to be ¢(0) = 0 and do(0)/dz = 0. For our
example, we will also take F(z) = Fye™*. Multiplying, both sides of the equation hy e7*
and integrating () < z < oo, we find

Lolp) = - = (28)
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Presenter Notes
Presentation Notes
An example.


@11 general the inverse Laplace transform involves performing a contour integral. but we
can use the following simple relations

00 1
L= / e Pdr = —. (29)
0 P
L, = / e Py = —. (30)
0 p?
< 1 _
Loz = / e~ e P dr = : (31)
0 p+7
Noting that
F F 1 1~
T =—“( -+ ) (32)
p*(v +p) +p p P
we see that the inverse Laplace transform gives us
F, .
o(z) =5 (1—e7" —7z). (33)

We can check that this a solution to the differential equation

_d'¢ _ d¢
o =Fe™ for ¢(0)=0 and ’ —(0)=0
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Presenter Notes
Presentation Notes
Some details.


Using Laplace transforms to solve equation :

(—d—2—1]¢(x) =F, sin(@j with #(0)=0, 420 _
dx L

dx

Note that : j sin(at)e_p ‘dt = 5 - >
d a +p Does this result
look familiar?
:>¢(x): F°2 sin(ﬂx]—ﬂsm(x) a. Yes
(z/L) -1 L) L
b. No


Presenter Notes
Presentation Notes
More details.


Table of Laplace

Laplace Iransiorm [able
Largely modeled on a table in D'Azzo and Houpis, Linear Control Systems Analysis and Design, 1988

F (s) fin 0=t
transforms L1 3(1) unit impulse at 7= 0
7 L 1 or u(f) unit step starting at £ = 0
5
3 1 t-u(t) ort ramp function
- 2
5
1 L o
4, o (n—1)! n = positive integer
_1€—ﬂ5' u(t —a) unit step starting at ¥ = a
5. S
1 (1—e™) ut)—u(t-a) rectangular pulse
—(l-e
6. <
1 —at .
7. . = exponential decay
§T+d
1 l n-1_-at
8. (s+a) m n = positive integer
9 1 ]' I. —it
Tos(s+a) E( —e™)
1 b
10 L —(l——e“‘”Jrie'“)
© s(s+a)(s+b) ab  b-a b-a
. s+a ilg_b(a—a)e_m+a(a—b)e_h]
" s(s+a)(s+b) ab b—a b—a
1 1 —at —bt
_ —— (e —e
12 ¥as+b) b—a' )
13 -5 L (ae™ —be™)
7 (s+a)s+D) a-—
https://www.dartmouth.edu/~sulli o pltace%20Transform%20Tabte.pdf

10/19/2022
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Presenter Notes
Presentation Notes
Table of transforms for simple functions.

https://www.dartmouth.edu/%7Esullivan/22files/New%20Laplace%20Transform%20Table.pdf

Inverse Laplace transform :
oo In order to evaluate these
L,(p)= je‘pt¢(t)dt integrals, we need to use
0 complex analysis.

A+ioo
= — j e £,(p Hp
A+ioo 1 A+ioo 00
Check: —— pt.B = — Pldp|e ™ d
= 2%1/1-[00 p)dp 27l lg[ooe p!e gp(u) N
o0 A+ioo o0
%jg&(u)du I e’y = LJ‘go(u)a’u I MU
7Tl 0 A—ioo —00

27UJ-(0(M du( M) D 5(t—u))

:{go(t) if >0

0O otherwise


Presenter Notes
Presentation Notes
Mathematical treatment of general case.


In general — to calculate inverse Laplace transforms, we need
to introduce concepts of complex numbers and contour
iIntegration

iP=-1

Define z=x+iy

Complex numbers
P i=+-1

|z|2 =zz% = (x + iy)(x — iy) =x’+y°
Polar representation

z=p(cosg+ising)=p €’


Presenter Notes
Presentation Notes
Introduction to properties of complex numbers.   To be continued next time.
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