PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 28 —Chap.9inF & W

Introduction to hydrodynamics
1. Motivation for topic
2. Newton’s laws for fluids
3. Conservation relations
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Presenter Notes
Presentation Notes
In this lecture we will begin an introductory treatment of the mechanics of fluids.


| || " B 0 1 e o || LSRR T LW || AN B WAL

" |
22 Mon, 10/17/2022 |Chap. 7 Green's function methods for one-dimensional Sturm-Liouville equations #16 10/19/2022
23 Wed, 10/19/2022 (Chap. 7 Fourier and other transform methods #17 10/21/2022
2 Fri, 10/21/2022 |Chap. 7 Complex variables and contour integration #18 10/24/2022
25/Mon, 10/24/2022 Chap. 5 Rigid body motion #19 10/26/2022
26/Wed, 10/26/2022 Chap. 5 Rigid body motion #20 10/28/2022
27 Fri, 10/28/2022 |Chap. 8 Elastic two-dimensional membranes
28 Mon, 10/31/2022 (Chap. 9 Mechanics of 3 dimensional fluids #21 11/02/2022
29 Wed, 11/02/2022 Chap. 9 Mechanics of 3 dimensional fluids

PHY 711 -- Assignment #21
Oct. 31, 2022

- Start reading Chapter 9 in Fetter & Walecka.

1. Approximate the ocean as an incompressible fluid and ignore effects of fluid motion to estimate the
pressure difference at a height of 100 meters below the sea relative to the pressure at the sea surface.
Please mention the density of sea water you assume for your estimate.
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Now is a good time to start thinking about your projects --
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Presentation expectations
* Prepare with powerpoint (or equivalent) for ~ 10
minutes and expect ~ 5 minutes for discussion (3
presentations per day)
 To accommodate all students, we will need 3 days....

» Details listed on webpage
http://users.wfu.edu/natalie/f22phy711/info/computational.html



http://users.wfu.edu/natalie/f22phy711/info/computational.html

Project

The purpose of this assignment is to provide an opportunity for you to study a topic of your choice in greater depth. The
general guideline for your choice of project is that it should have something to do with classical mechanics, and there should
be some degree of of analytic or numerical computation associated with the project. The completed project will include a short
write-up and a presentation to the class. You may design your own project or use one of the following list (which will be
updated throughout the term).

e Explain the details of a homework problem that was assigned or one you design, including the basic principles and the
solution methods and results.

e Consider a scattering experiment in which you specify the spherically symetric interaction potential V(r). Write a computer
program (using your favorite language) to evaluate the scattering cross section for your system. (Depending on your choice,
you may wish to present your results either in the the center-of-mass or lab frames of reference.)

e Consider the Foucoult Pendulum. Analyze the equations of motion including both the horizontal and vertical motions. You
can either solve the equations exactly or use perturbation theory. Compare the effects of the vertical motion to the effects of
air friction.

e Consider a model system of 2 or more interacting particles with appropriate initial conditions, using numerical methods to
find out how the system evolves in time and space. For few particles and special initial conditions this approach can be used
to explore orbital mechanics. For many particles and random initial conditions, this approach can be used to explore statistical
mechanics via molecular dynamics simulations.

e Examine the normal modes of vibration for a model system with 3 or more masses in 2 or 3 dimensions.

« Analyze the soliton equations beyond what was covered in class.
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Hydrodynamic analysis
Motivation
1. Natural progression from strings, membranes, fluids;
description of 1, 2, and 3 dimensional continua
2. Interesting and technologically important phenomena
associated with fluids

Plan
1. Newton’s laws for fluids (leaving out dissipative effects
for now)
Continuity equation
Stress tensor
Energy relations
Bernoulli’'s theorem
Various examples
Sound waves

NO R WN


Presenter Notes
Presentation Notes
Here is a list of topics that will be covered in the next few lectures.


.

Newton’s equations for fluids
Use Euler formulation; following “particles” of fluid

Variables: Density p(x,y,z,t)
Pressure p(x,y,z,t)
Velocity  v(x,y,z,t)
ma=F
m — pdV
dv

a—
dt

KF—->FK . +F

app pressure



Presenter Notes
Presentation Notes
Newton’s laws need to be adapted to describe the physics of fluids.   Here pressure is important and more generally, the functions used to describe fluids depend on position and time.


— —

p(x) p(x+dx)

X (_p(x_l_dxa Y Z) ‘|‘p(X, V, Z))dde

— (—p(x_l_dx’yc’iz)_l_p(xayaz))dxdde
X

pressure

__P gy
OX
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Presenter Notes
Presentation Notes
Pressure acts in all directions.    Here we argue that the spatial derivative of the pressure applies a force to a volume of fluid.


Newton’s equations for fluids -- continued

ma ::applied T Fpressure m = pd V
A\
,OdV E — fapplied L dV o (Vp )dV _ Fapplied
v applied m
= applied Vp
dt Fpressure = _Vp dv


Presenter Notes
Presentation Notes
It is convenient to write Newton’s law in terms of the mass density, velocity, and pressure of the fluid.


Detailed analysis of acceleration term:

V = V(x,y,z,t)
dV:@de+8de+6vdz ov
dt Oxdt oydt o0z dt ot
dv GV ov ov ov

=—V +—V +—V +—
dr  ox oy 7 0Oz Ot

av =(v- V)V+6—V

dl Ot
Note that : VEVX+V Y +V.2Z
a—vv +@v +@v —V(lv-v)—vx(va)
Ox oy = 0Oz 2


Presenter Notes
Presentation Notes
Because of the continuous nature of the velocity,  the total time derivative of the fluid velocity depends both or the partial derivates with respect to space and with respect to time as derived here.


Newton’s equations for fluids -- continued

dv ov
1071‘ — p((VV)V‘FEj — pfapplied _Vp

1 oV
p[V(EV°Vj—VX(VXV)+Ej =Pt iea — VD

a—V+V(
ot

app

%vz)—vx(va):f h.ed—@
Jo,


Presenter Notes
Presentation Notes
Some alternative expressions for the velocity terms.


Detail — What is irrotational flow?

Irrotational flow: Vxv=0

fov, Ov, ) ., (c%/x Ov, ) [0V, Ov,
V x V=X —_ + y — +7 _
oy Oz Oz Ox ox Oy

Which of the following vector functions have zero curl?
a. v=Cx (C 1is a constant)

b. v=Cxx

c. v=Cyx



)
Solution of Euler’s equation for fluids

%+V( ) V><(V><V)=f oy

Consider the following restrictions:
I. (Vxv)=0 ‘irrotational flow"

= v=-VO® O i1s "velocity potential"

2. 1 =—-VU conservative applied force

applied
3. = (constant)  incompressible fluid
o\— VCD
( )+V(%v2):—VU—E
Ot o,

:>V(p+U+ % —agjzo
Jo, Ot


Presenter Notes
Presentation Notes
The restricted equations have some interesting properties.


Bernoulli's integral of Euler’s equation for irrotational and

iIncompressible fluid

V(£+U+ V —82)—0
Jo, ot

Integrating over space :

where v=-VO(r,r)= —V(CD(r, H+C' (t))

Piu+nr =22
yo, ot
L iU+l Ly? 290 _ =0

yo, ot

Bernoulli's theorem


Presenter Notes
Presentation Notes
This result is known as Bernoulli’s equation


Examples of Bernoulli's theorem

LA g g Ly? — ob _ =0

o, Ot

Modified form; assuming 88;‘; =0
P

4+ U+ % v? = constant

Yo,

P = P> = Pam

U -U,=gh

v, =0

Py +ivi=L240, +1v2
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Presenter Notes
Presentation Notes
This is a problem illustrating Bernoulli’s equation   as a syphon.


.

Examples of Bernoulli’'s theorem -- continued

P1= P2 = Paum
U -U, =gh
v, =0
&+U1+%vl
Yo,
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Presenter Notes
Presentation Notes
This example is taken from the PHY 114 textbook


®
Examples of Bernoulli’'s theorem -- continued

P +U +2 v? = constant

A
I/ /
F P [ ¥

F
pl Z patm p2 — patm
U =U,
vA=v,a continuity equation
Py +ivi=L240 +1y)
yo,
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Presenter Notes
Presentation Notes
Another ezample of Bernoulli’s equation for a syringe.


Examples of Bernoulli’'s theorem -- continued

£ +U +1 v = constant

*@ T

w
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Presenter Notes
Presentation Notes
Syringe fluid continued.


Examples of Bernoulli’'s theorem — continued
Approximate explanation of airplane lift

Cross section view of airplane wing
http://en.wikipedia.org/wiki/Lift %28force %29

(D
— gy

lower

U, =U,
ﬁ+Ul+%v12 &+U2+%v22
P P

P>~ pl_Ep(Vl _sz)
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Presenter Notes
Presentation Notes
This example of Bernoulli’s equation is oversimplified.    It appeared in most of the old textbook, but seems now to be deemphasized.    It is given here since it  shows some aspects of fluid flow, although apparently not good enough.  


http://en.wikipedia.org/wiki/Lift_(force)

Your question -- What aspects do over simplified Bernoulli's
equation not include in studying fluid dynamics?

According to a Scientific American article, the conclusion
that v,>v, because of the shape of the airplane wing is not

quite true. Numerical modeling reveal a more complicated
picture.

https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/



https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/

)

At NASA Ames Fluid Mechanics Laboratory, streamlines of dye in
a water channel interact with a model airplane. Credit: lan Allen
(copied from Scientific American page mentioned above).






Continuity equation connecting fluid density and velocity:

op
Ly —()
~ V(o)

Z—'[;+p(v-v)+(Vp)-V=O

. dp Op
Consider: = +(Vp) v
o FP)

= ac,{—f +p(V-v)=0 alternative form

of continuity equation


Presenter Notes
Presentation Notes
The continuity equation is an important aspect of fluid flow.


Some details on the velocity potential
Continuity equation :

op

—+V-(pv)=0

V- (ov)

(Z—'[;er(V-V)Jr(Vp)-V =0

For incompressible fluid: p = (constant )

=>V-v=0

Irrotational flow: Vxv=0 =>v=-VO
=V'0=0


Presenter Notes
Presentation Notes
For an incompressible and irrotational fluid,   it is mathematically convenient to express the velocity field in terms of a velocity potential field.


Example — uniform flow

b

\AAAAS

V@D =0

0°® 0'Dd 0°D
—+—+—=0

Ox oy Oz

Possible solution ;

O=—v:z
v=-VD=v7
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Presenter Notes
Presentation Notes
For a uniformly fluid flowing along the z direction, the velocity potential and velocity field are easily written as shown.


Example — flow around a long cylinder (oriented in

the Y direction)

\AAAAL

VD =0
L
or

r=a
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Presenter Notes
Presentation Notes
Now consider the uniform fluid  in the presence of an impediment.    In the is case we consider a cylindrical log.


® .. L :
Laplace equation in cylindrical coordinates

(r,0,defined 1n x-z plane; y representing cylinder axis)
2 2
qu):():l 0 r6®+ 12 0 CIZD+8 C?
ror or r° 00" oy
In our case, there 1s no motion in the y dimension
= ®(r,6,y)=D(r,0)

From boundary condition : v, (r —> OO) =V,

%(D (r = o0)=—v, = ®(r — ©0,6)=—v,rcosb
z

2
Note that : g 002s 0 =—cos{

06

Guess form: ®(r,8)= f{r)cos®


Presenter Notes
Presentation Notes
We need to consider solutions of the Laplace equation.


Necessary equation for radial function

10 o |1

——F == =0

ror or r’ 4

f(r)=Ar+ L where A, B are constants
r

Boundary condition on cylinder surface::

ol

or | _

df(r—a) 0 = A—£

dr a’
— B = Aa’

Boundary conditionato: = A4=-v,


Presenter Notes
Presentation Notes
Particular equations for this geometry and the application of the boundary values.


2
D(r,0)=—v, [r + a_) cosd

r
2
v, :—@E:v{l—a—zjcosﬁ
or v
1 0O a” ) .
Vo :—;%:V0£1+r—2j81n9

For 3-dimensional system, consider a spherical obstruction
Laplacian in spherical polar coordinates:
2
V2®:O:%i(r26£j+ 21. a(sin08®j+ - .12 8(12)
r° or or r°siné 06 00 ) r°sin" 6 op
to be continued ...



Presenter Notes
Presentation Notes
More details.
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