PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 32: Chap. 9 of F&W

Linear and non-linear sound waves

1. Summary of linear sound phonenmena
2. Introduction to non-linear effects

3. Analysis of instability — shock phenomena
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Presenter Notes
Presentation Notes
In this lecture, we will consider traveling wave solutions to the sound wave equations.
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A Tale of Cosmic Ecosystems:
How galaxies evolve

In recent years, our understanding of how galaxies form
and evolve have matured dramatically. The latest numerical
simulations can successfully reproduce both the stellar
content of galaxies and their large scale statistical
properties. However, these models still fail to match the
observed properties of the diffuse gas, which span
hundreds of kiloparsecs beyond the visible stellar disks of
the galaxies. Understanding the complex physical processes
that dictate this circumgalactic space is a crucial next step
towards creating a comprehensive model of galaxy
evolution. 1 will highlight some of our recent results in
characterizing this circumgalactic gas both in small and
large scales. | will also relate how ubiquitously observed
circumgalactic HI relates with the ionized reservoirs of
circumgalactic gas around galaxies. These will provide
empirical bedrocks to identify the dominant mechanisms
that govern the circumgalactic gas in driving galaxy
evolution. Lastly, [ will highlight some exciting insights
from latest James Webb Space Telescope observations and
how it is reshaping our understanding of the early
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Signup with name and topic at 9 AM on Friday 11/11/2022

PHY 711 Presentation Schedule for Fall 2022

Monday, November 28, 2022

Name Title/Topic
10:00-10:15
10:17-10:32
10:35-10:50

Wednesday, November 30,, 2022

Name Title/Topic
10:00-10:15
10:17-10:32
10:35-10:50

Friday, December 2, 2022

Name Title/Topic
10:00-10:15
10:17-10:32
10:35-10:50
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28 Mon, 10/31/2022 |Chap.

Mechanics of 3 dimensional fluids

#21

11/02/2022

» |32

9
29 Wed, 11/02/2022 |Chap. 9 Mechanics of 3 dimensional fluids #22 11/04/2022
30 |Fri, 11/04/2022 |Chap. 9 Linearized hydrodynamics equations #23 11/07/2022
31 Mon, 11/07/2022 |Chap. 9 Linear sound waves #24 11/09/2022
Wed, 11/09/2022 |Chap. 9 Scattering of sound and non-linear effects  |#25 11/11/2022
33 |Fri, 11/11/2022 |Chap. 10 Surface waves int fluids
34 Mon, 11/14/2022 Chap. 10 Surface waves in fluids; soliton solutions
35 |Wed, 11/16/2022 Chap. 11 Heat conduction
36 Fri, 11/18/2022 |Chap. 12 Viscous effects on hydrodynamics
37 Mon, 11/21/2022 \Chap 1-12 Review
Wed, 11/23/2022 Thanksgiving Holiday
Fri, 11/25/2022 Thanksgiving Holiday
Mon, 11/28/2022 Presentations |
Wed, 11/30/2022 Presentations Il
Fri, 12/02/2022 Presentations il
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Presenter Notes
Presentation Notes
Schedule.


PHY 711 -- Assighment #25

Nov. 09, 2022
Finish reading Chapter 9 in Fetter & Walecka.

1. Assume the ideal gas law and adiabatic conditions for He gas, having an initial
pressure of pg= 101325 Pa (1 atm) and initial temperature of To=300K. Calculate the

following when the pressure is changed p1=2po.
a. T1.

b. The change in the internal energy per unit mass A €.
c. The change in the entropy per unit mass A s
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Visualization of longitudinal wave motion

From the website:
https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

©2015, Dan Russell


https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html

Continuing to discuss linear sound waves — .
Scattering from a rigid cylinder /|

N 2

= X

" ) |IH"|||H

H

Figure 51.8 Scattering from a rigid cylinder.

Figure from Fetter and Walecka pg. 337
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Presenter Notes
Presentation Notes
Now consider the case of a plane wave of sound, scattering off of a cylindrical object.     Can you think of a physical situation for this model?


Example of cylindrical scattering objects --
SHy V

Suppose a trumpeter is playing near the columns. Maximal scattering occurs when
a. Facing toward the column b. Facing away from the column.
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Scattering of sound waves —
for example, from a rigid cylinder

Velocity potential --
Or)=D. (r)+d_(r) O (r)=ée*"

mnc mnc

Helmholz equation in cylindrical coordinates:

1o 0 1 © 0
(V2 +k2)®(r):0:[;ﬁrr@r + e + ~ +k2]CD(r)

Assume: @ (r) = i e R ()

where : >
dr rdr r

2 2
(d—+l d _m +k2] R (r)=0


Presenter Notes
Presentation Notes
Analysis of the scattering wave using cylindrical coordinates.


Z i"e™J (kr)

m—=—a0

Figure 51.8 Scattering from a rigid cylinder.

®, (r)= > C,e™H,(kr) whereHankel function

represents an outgoing wave: H_ (kr)=J (kr)+iN (kr)

. oD
Boundary conditionatr =a: —| =0

or

r=a

") (ka)+C H' (ka)=0  C, =" n kD)
"0 (k)
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Presenter Notes
Presentation Notes
In this case we expect a cylindrical wave that can be represented in terms of Bessel and Neumann functions, or more conveniently in terms of Hankel functions H.          Satisfying the boundary values on the surface of the scattering cylinder,   we find the coefficients of the expression.


& (kA
O(0)== ) 1" e )

Asymptotic form:

lmHm(kr) ~ Lei(kr—ﬁ/4)
kr— o0 ﬂkr

(I)sc(r) z o - Z J' (ka) lm¢ e(kr—ﬂ/4)
e =0 () N\ ke

__ /i i S (k) g4
2k = H' (ka)
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Presenter Notes
Presentation Notes
Using the asymptotic form of the Hankel functions we can analyze the results further.


do 2
b 7 (#)
J' (ka) i(mp—m/4)
\/7,%sz' (ka)
For ka << 1
do _ ‘f(¢)‘2 ~ L (1-2cos ¢)2
do 8
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Presenter Notes
Presentation Notes
Defining the appropriate scattering cross section, we can analyze the results further.     For ka<<1  (long wavelengths, low frequencies) we find that most of the sound is scattered backwards from the propagation direction.


Revisiting the trumpeter question --

Conclusion — be careful when choosing a place to play your trumpet --

11/9/2022 PHY 711 Fall 2022 -- Lecture 32
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Now consider some non-linear effects in sound

Examples?

We will consider the simple case —

One dimension for motion

Fluid is assumed to be an ideal gas
Adiabatic conditions

All variables will be expressed in terms of the

density p(x,t)

W=



Effects of nonlinearities in fluid equations
-- one dimensional case

Newton - Euler equation of motion :

ov Vp
5 + (V ) V)V = fapplied -
L . op
Continuity equation : 2 +V. (pv) =0
[
Assume spatial variation confined to x direction ;

assume thatv=vx and f ., 6 =0.


Presenter Notes
Presentation Notes
Review of basic equations,  specializing in one spatial dimension.


@+v@+l@—p:0
Ot ox p Ox

a—'0+v@—'0+,0@20
ot ox ox

Expressing pintermsof p: p= p(p)

P _Pop Ecz(p)a—p where a—pzcz(,o)
ox Op Ox Ox op
For adiabatic 1deal gas: ap _ yd_p p=Dp, [ﬁ
p P Po

y—1
cz(p)zy—pzcg(ﬁj where cézypo
P Po Po

11/9/2022 PHY 711 Fall 2022 -- Lecture 32
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Presenter Notes
Presentation Notes
Decoupling the variables.


Digression — What is gamma®?

Internal energy for ideal gas:  pV = Nk,T

E_ = %NkBT f =degrees of freedom; 3 for atom, 5 for diatomic molecule

C

In terms of specific heat ratio: =L

CV
dE . = dQ —dw




11/9/2022

2
@+V8v+c (p) 8,0:0

Ot Ox Yo o)

Ot ox ox

Expressing variation of v in terms of v(p):

2
oV 8,0+v5v 8,0+c (,0)8,0:0
op Ot Op Ox 0o Ox

8_p+vé_p+p8v P =0

ot Ox Op Ox

PHY 711 Fall 2022 -- Lecture 32
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Presenter Notes
Presentation Notes
More analysis.


Some more algebra :

2
From Euler equation : o (8'0 + va—pj + 0 (p) op _ 0
op\ ot  Ox o Ox
From continuity equation :8_,0 + V@_p =—p ov op

ot  Ox Op Ox

2
Combined equation : » — 0 v op . £ (p) 9p =0
op op Ox 0 0x
2
(2] fo o
op p op p
:8—p+(vic)a—p=0


Presenter Notes
Presentation Notes
Further derivations.


y—1
Assuming adiabatic process: ¢’ = cg (£] cg _ 1Py
Po Po
(y-1)/2
e, (ﬁ]
Lo
p (r-1)/2
' d '
e B |
810 dp p 2o p() /0
5 ( (r-1)/2
—vy=1 Col [ﬁj —1
7/_ \ IOO )


Presenter Notes
Presentation Notes
Using adiabatic relationships.




Presenter Notes
Presentation Notes
Analysis of fluid velocity from a knowledge of the wave velocity.


S
Traveling wave solution:

Assume: p=p,+ f(x—u(p)t)
Need to find self - consistent equations for

propagation velocity u( o) using equations

. L 0
From previous derivations : L (vEc)==

ot
Apparently : u(p) <= vxe

op 0
ox

For adiabatic ideal gas and + signs :

i (y-1)/2 )
u=v+c=c, T ('Oj ——
y =1\ p, y—1



Presenter Notes
Presentation Notes
Analysis for a traveling wave.


®
Traveling wave solution -- continued:

a—'04—(\/+c)8'0 0
ot Ox

Assume: p=p,+ f(x—u(p)t) = p, +f(x—(vic)t)

For adiabatic ideal gas and + signs :

(r-1)/2
1 2
u=v+c=c, T ['0] ——
y =1\ py y—1

Solution 1n linear approxiation:

(7+1 2 j
u=v+crv,+c,=c¢, — =C,
y—1 y-1

:>p=,00+f(x—cot)


Presenter Notes
Presentation Notes
Checking the linear result


Some details
Assume: p=p,+ f(x—u(p)t)

Need to find self - consistent equations for
propagation velocity u( o) using equations

From previous derivations : 2—’[; +(v£c) Z’O 0
x

Apparently : u(p) < vte

Note that foru =v+c¢  (choice of + solution)

8_,0+M(9p 0

ot ox
p(x,t) = py + f(x —u(p(x,1))t)
Let w=x—-u(p(x,t))t
df 8w df ow df
dw o dwox  dw

is satisfied by a function of the form

( u+u)=0



Traveling wave solution -- full non-linear case:

Visualization for particular wavetform: p=p, + f(x —u(p)t)
\ )

Assume: f(w)= p,s(w) I
w
P 1y S(x —ut)
Po

For adiabatic ideal gas:

[ (y-1)/2 A
+1 2
\7/ — L\ Py

2
u:c(7/+i(1+s(x ut)) 1)/2——]
/4


Presenter Notes
Presentation Notes
Analysis of how to visualize the traveling wave solution.


.

Visualization continued:

y—1 y—1
Plot s(x—ut) for fixed ¢, as a function of x :

U= CO(7+1(1+S(X ut)) )/2—Lj

Let w=x—ut
x=w+ut=w+u(w)t=x(w,t)
y+1 R )
u(w)=c 1+ s(w ——
o0=a L 1son) -2
Parametric equations:

plot s(w) vs x(w,t) forrange of w ateach ¢


Presenter Notes
Presentation Notes
More details.


.

Summary
ap
+u
ot (,0) 8x

Solution:  p = p, + f(x—u(p)t) = p,(1+s(x—u(p)r))

For linear case: u(p)=c,
. 1 2
For non-linear case: u(p) =c, [7/ i 1 (1+s(x— ut)) Wz _ —lj
Y- Y —

Plot s(x —ut) for fixed ¢, as a function of x :
Let w=x—ut = x=w+t+ut=w+u(w)t=x(w,t)
y+1 -2 2
u(w)=c 1+ s(w ——
o0 =a L1 so0) -2
Parametric equations: plot s(w) vs x(w,t) forrange of w


Presenter Notes
Presentation Notes
Summary.


[\

VAR

(A

LANAAN

A
/ /] /\X/\ A\

Linear wave:

SN

Non-linear wave:

ﬂW//L‘
ﬂ/wﬂm4
)
T
ff/ﬂz


Presenter Notes
Presentation Notes
Example visualization.


.

Linear wave

-10

Non-linear wave

11/9/2022
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20
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Presenter Notes
Presentation Notes
Animations from Maple.


Analysis of shock wave
Plots of op

Solution becomes
unphysical

)
RAVARIVAN VAN /v
A A

shock

11/9/2022 PHY 711 Fall 2022 -- Lecture 32
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Presenter Notes
Presentation Notes
Note that the vertical axis represents the longitudinal wave displacement.    When this displacement becomes multivalued for a given coordinate x as shown, the solution  becomes unphysical.     At this point we need to consider the analysis in a different way.


Effects of amplitude of 6p

Large amplitude

Smaller amplitude

11/9/2022 PHY 711 Fall 2022 -- Lecture 32
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Analysis of shock wave — assumed to moving at velocity u

After shock Before shock
t, t,
Op,, OV 0P op;, OV4, 0P

11/9/2022

Note that in this case u is assumed to be a
given parameter of the system.

PHY 711 Fall 2022 -- Lecture 32
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Presenter Notes
Presentation Notes
Your textbook discusses the shock wave analysis.    Here we assume that there is a region (blue) where the analysis fails,  but assumes that we can properly analyze the physics before and after the shock.     The notation given here is similar to that given in your text.


Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

Assume p(x,t) = p(x — ut) Atter shock
t,- .
5;%2, &y, P2

p(x,t)= p(x—ut)
v(x,t) = v(x—ut)

Continuity equation:

Oop Olpv o pv— pu
a'[;Jr (8x):O: ( Py ) = (v, —u)p, =(v,—u)p,

Conservation of energy and momentum:

:>p2+p2(v2—u)2 =p1+p1(v1—u)

Z>62+—(V2—u)2-I—&:el-l-l(vl—u)z-l——

11/9/2022 PHY 711 Fall 2022 -- Lecture 32 33


Presenter Notes
Presentation Notes
Some of the details of the analysis before and after the shock event.


Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

After shock

Summary of equations b |
3pa Ny, P2
:>(vz—u),02:(vl—u),o1 ._ f :
2 2
:p2+p2(v2—u) :p1+p1(vl_”) | |
=e6+—(v,—u) +=2=¢+—(v,—u) +=
i 2( 2 ) P> 1 2( 1 ) P
Assume that within each regions (1 & 2), the 1deal gas equations apply
61—|—p1= Y D €2+p2= y D
g v=1lp P, ¥v—=1p,

It follows that - +l(v2—u)2: L&qu(vl—u)z
y=1p, 2 y=1p 2

11/9/2022 PHY 711 Fall 2022 -- Lecture 32 34


Presenter Notes
Presentation Notes
Analyzing the equations.


Analysis of shock wave — continued
For adiabatic ideal gas, also conS|der|ng energy and
momentum conservation:

1 1 |
7/+1 p2 _|_1 592 NV, P2 i?p;, vy, 6p1
&:7/—1]?1 <7/+1 | x
Jo) 7/+1+p2 y—1 Y.
y—1 p
5
4_
S :.
= Fory=1.5
Q. 5
1_'
0 | l{llO 260 | 360

Ps/P;
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Presenter Notes
Presentation Notes
Analyzing ratio of the density after and before the shock wave.


Analysis of shock wave — continued
For adiabatic ideal gas, entropy considerations::

Ideal gas law: Pkl Adiabatic ideal gas: P — = P ”
p My plp
: E T
Internal energy density: ¢=—"%= P __ Kk =¢,T

M- (y-1)p (r-1)M,

First law of thermo: de& =Tds — pd (ij

1)
1 P 1 P dp d,O p
ds =—| d +pd(—j = [ — ¥ jzc dln(—]
T( ((V—I)P] p ) (r=1)pT\ p P g p’
s=c, ln(% + (constant)
0

¥
s, =8 =¢,In &(&j 0<s,—s5,<¢, ln(pzj yln(y_l_lj
1\ P P y—1


Presenter Notes
Presentation Notes
Analyzing the entropy before and after the shock wave.     In general, many more relationships can be analyzed.    Consult your textbook for more details.   
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