PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 34: Chapter10in F & W

Surface waves
« Summary of linear surface wave solutions

* Non-linear contributions and soliton solutions
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Presenter Notes
Presentation Notes
In this lecture, we will continue analyzing surface waves in water including the special non-linear soliton solutions.


This material is covered in Chapter 10 of
your textbook using similar notation.
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Mon, 10/31/2022 |Chap. 9 Mechanics of 3 dimensional fluids #21 11/02/2022
Wed, 11/02/2022 |Chap. 9 Mechanics of 3 dimensional fluids #22 11/04/2022
Fri, 11/04/2022 |Chap. 9 Linearized hydrodynamics equations #23 11/07/2022
Mon, 11/07/2022 |Chap. 9 Linear sound waves #24 11/09/2022
Wed, 11/09/2022 |Chap. 9 Scattering of sound and non-linear effects | #25 11/11/2022
Fri, 11/11/2022 |Chap. 10 Surface waves in fluids #26 11/16/2022
Mon, 11/14/2022 |Chap. 10 Surface waves in fluids; soliton solutions

Wed, 11/16/2022 |Chap. 11 Heat conduction

Fri, 11/18/2022 |Chap. 12 Viscous effects on hydrodynamics

Mon, 11/21/2022 |Chap 1-12 Review

Wed, 11/23/2022

Thanksgiving Holiday

Fri, 11/25/2022

Thanksgiving Holiday

Mon, 11/28/2022 Presentations |
Wed, 11/30/2022 Presentations Il
Fri, 12/02/2022 Presentations Il

Note: No new HW assignments.

Please use your extra time

to prepare for your presentations, complete any outstanding
assignments, and reviewing the material

11/14/2022
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Presenter Notes
Presentation Notes
Schedule.


11/14/2022

PHY 711 Presentation Schedule for Fall 2022

Monday, November 28, 2022

Name Title/Topic
10:00-10:15 Lee Pryor Foucault Pend. on a spinning torus
10:17-10:32 Samuel Griffith Normal Modes of Oscillation
10:35-10:50

Wednesday, November 30,, 2022

Name Title/Topic
10:00-10:15 Katie Koch 2D Wave Equation
10:17-10:32 Banasree Sarkar Mou Moment of inertia tensor of rigid body and

the dynamics of spinning top
10:35-10:50 Arezoo Nameny Foucault pendulum
Friday, December 2, 2022

Name Title/Topic
10:00-10:15 Zezhong Zhang Acoustic Tweezer
10:17-10:32 Athul Prem Green's function methods
10:35-10:50 Evan Kumar Laplace Transforms
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Note about presentations

» Please consult with me if you have any questions about
the content, format, expectations, etc..

» Please prepare a ~ 10 minute presentation using
powerpoint or equivalent software, leaving ~ 5 minutes
for questions

» Please turn in your presentation, your preparation
notes, mathematica, maple, matlab,... work if
appropriate. If your topic follows a paper or write-up
from the literature, please also include a copy of that.



Your questions —

From Sam: In this solution, there are two coupled
equations, the bernouli equation which dictates the surface
density and the surface velocity equation. Does the fact
that we consider a solution for both mean that either one by
itself is not an adequate description of the surface motion?

Short answer: Yes
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Longer answer — Recall that the linear equations for surface
water waves are also coupled. In today’s lecture we focus
on the additional non-linear effects.



Consider a container of water with average height h and
surface h+{(x,y,

Atmospheric pressure p, 18 in equilibrium at the surface
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Presenter Notes
Presentation Notes
Reference system and notation.


e e e i

>
Euler's equation for incompressible fluid:

\% - - e
vy YP_ _yy_ X2 or irrotational flow -- v

applied o -
t inearized tion: V oD + h)+— |=
Continuity equation within the fluid ihearized equation. N gz=h)+—|=

op
5+V- JoA =0 = V.-v=0 t surface: Z:h-l—é/ _E_'_gé'_k_oz
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Presenter Notes
Presentation Notes
Summarizing the linear analysis.


@eep only linear terms and assume that horizontal variation is

only along x:
o° 0

For 0<z<h+{¢: VO=|—5+— |D(x,z,1)=0
oz~ Ox

Consider and periodic waveform: ®(x,z,t) = Z(z)cos(k(x—ct))
2
= (d—z—ksz(z) =0
dz

Boundary condition at bottom of tank: v_(x,0,¢)=0

= 9% 0)=0 7Z(z) = Acosh(kz)
dz 0f 0D (x,h+ ¢ ,t)
Atsurface: z=h+{ ——=v (x,h+{,t)=-
ot Oz
Also: —8®(X’h+§’t)+g§+&:0
ot o,

2 2

L FO(wheln) | of FO(uhiln) | 00(uht )

ot* ot ot* Oz


Presenter Notes
Presentation Notes
Continue analysis of linear equations.


Velocity potential: ®(x,z,t) = Acosh(kz)cos (k(x — ct))
Atsurface:  D(x,(h+¢),1) = Acosh(k(h+¢))cos(k(x—ct))

oC GCD(x,h+§,t) GCI)(x,th{,t) Do
— = =— — —=0
Py vz(x,h+§,t) . Py + gl + p

FO(xh+gn) o OO(nhisr)  b(xh+dr)
or o or . N

sinh(k (1 +¢))
cosh(k (7 +¢))

—

Acosh(k(h + é’))cos(k(x—ct))(kz * gk

L _gsinhGk(h+S) g anh(kh)

~ k cosh(k(h+¢)) &
Note that this solution represents a pure plane wave. More
likely, there would be a linear combination of wavevectors k.
Additionally, your text considers the effects of surface
tension. In this lecture, we will focus on the effects of the
non-linear effects of Euler and continuity equations.
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Presenter Notes
Presentation Notes
Consistent analysis of the wave speed.


— Surface waves in an incompressible fluid
General problem

iIncluding o
non-linearities

h-
L -

Within fluid: 0<z<h+(¢

o |,
— + g(z—h)=constant D =D(x,y,z,t)
—V*® =0 v=v(x,y,z,t)=-VD(x,y,z,t)
At surface: z=h+¢ with ¢ =¢(x, y,1)

d§ _96 06 06 0D(x,p.z.0)

v (h+()= —+v =— wherev. =v_ (x,y,h+ .t

()= = vy, i o = Ve (224 1)
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Presenter Notes
Presentation Notes
Returning to the full problem with non-linearities.


Some relationships at surface --

At surface: z=h+({ with ¢ =¢(x, y,t)
5 = % +vx%+v 9% = — 0P, ,2,1) where v =v_ (x,y,h + é’,t)
dt ot ox oy Oz _— RO
dg

Note that v_(x,y,h+,t) = A

wave phase (t/T=0.000

From wikipedia
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e e e e o

e
A B e A A A
A B A A A
A B A A A A
R B A AR A
A B A A A AR
A B A A A
A B A A

d il A B A A

> X

—

Further sitmplifications; assume trivial y - dependence
O =D(x,z,t ¢ =C\x,t
Within fluid : 0<z<h+(

ob dl

At surface: v x,z=h+{,t)=——=
z
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Presenter Notes
Presentation Notes
Specializing to motion along the x direction and surface direction in the z direction.


Non-linear effects in surface waves

e e o

S ot sttt o e e e e o

e
A B e A A A
A B A A A
A B A A A A
R B A AR A
A B A A A AR
A B A A A
A B A A

Rl A B A A A

> X

ominant non-linear effects = soliton solutions

3n, x—ct
2h

Mo
where ¢ = SN 1+ —
l-n,/h 2h

(x,) =1, sech’ , = constant
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Presenter Notes
Presentation Notes
Answer that we will find for the soliton solution.


Detailed analysis of non-linear surface waves
[Note that these derivations follow Alexander L. Fetter and

John Dirk Walecka, Theoretical Mechanics of Particles and
Continua (McGraw Hill, 1980), Chapt. 10.]

We assume that we have an incompressible fluid: p = constant
Velocity potential: ®(x,z,t); v(x,z,t)=—-VD(x,z,t¢)

The surface of the fluid is described by z=h+ (x,t). It is
assumed that the fluid is contained in a structure
(lake, river, swimming pool, etc.) with a structureless
bottom defined by the z = 0 plane and filled to an
equilibrium height of z = h.


Presenter Notes
Presentation Notes
Summary of assumptions for our analysis.


®
Defining equations for ®(x,z,t) and £(x,t)

where 0 <z <A+ {(x,¢)
Continuity equation:
O’®D(x,z,t) O0°D(x,z,t)
> T > =
ox 0z
Bernoulli equation (assuming irrotational flow) and gravitation
potential energy

| 0D(x,z,1) +1Kacp(x,z,z)j2 +(8®(x,z,t)jz} oo —0.

V.-v=0 = 0

ot 2|\, or | -
) )
A% A%

X z


Presenter Notes
Presentation Notes
Working through the equations within water.


Boundary conditions on functions —

Zero velocity at bottom of tank:

oD (x,0,7) 0
Oz .
Consistent vertical velocity at water surface
d 0
v.(x,z,0)|__, C"V—V VI +— 5
=il Ot
0
L, 06,
ox Ot
__00(xz0)  00(xz0 0C(n) et

0z Ox Ox Ot |.pe


Presenter Notes
Presentation Notes
Boundary effects at the bottom of the channel and at the surface.


®
Analysis assuming water height z is small relative to

variations in the direction of wave motion (x)
Taylor’s expansion about z = O:

oD 22 O°D z O'D z' 0'd

d(x,z,t) = D(x,0 t)+z—(x 0,1 )+7 - (x,0, )+; >3 (x,O,t)+Z! - (x,0,¢)---

Note that the zero vertical velocity at the bottom suggest
that to a good approximation, that all odd derivatives
8”CD vanish from the Taylor expansion. In addition,

the Laplace equation allows us to convert all even
derivatives with respect to z to derivatives with respect to x.

oD z* 0*D z? 0’ 4 0'd
DO(x,z,t) = D(x,0,t) + z—,0,¢) + — ,0.0) + — x,0,1) + — x,0,1)---
( ) = D( ) a//) 28Zz( )362( )4!624( )

_ POz Fd(xzn)

Ox’ oz*
Modified Taylor's expansion: ®@(x,z,t) ~ D(x,0,1) _%(g C?( x.,0.1 z* ot (I)
X



Presenter Notes
Presentation Notes
Here we start a number of steps to analyze the leading terms in the linearities.      In this case we perform a Taylor’s expansion about z=0 at the bottom of the channel.


Some details --

20 3 A3 O
00,20 20000+ 20,0+ 202 0.0+ =02 (0,042 T2
2 oz 3! oz

Atbottom: z=0 andv_ (x,0,1)=0 = aag(x,O,t) =0
Z

Further, you textbook argues that using Fourier transforms,

(k) |, (k)"
2! 4!

D(x,z,1) = ZL j dk cosh(kz)e™ f (k) zzl j dk[l + + j e £ (k,1)
T —o0

2P 4
D(x,2.1) = c1>(x0t)+z—5 2 (x,O,t)+Z aq)
2 0z

(th)
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Check linearized equations and their solutions:

Bernoulli equations --
Bernoulli equation evaluated at z =/ + £ (x,1)

oD(x,h,t
- (& )+ g (x,1) =0

Consistent vertical velocity at z =2+ {(x,¢)
_0D(x,z,t) 0L (x,1)
0z Ot |_pe
Using Taylor's expansion results to lowest order
oD (x,h,t 0°D(x,0,¢ ol (x,t oD(x,h,t oD (x,0,t
OOk OO0 SE0nt) Bk | OO0 ey
0z Ox ot Ot Ot

=0

o*D(x,0,1)

52d(x,0,1)
or '

ox*

Decoupled equations: gh

=>linear wave equation with c°=gh


Presenter Notes
Presentation Notes
Checking lowest order (linear) term.


Analysis of non-linear equations --

Bernoulli equation evaluated at surface:

_0D(x,z,t) 1| 0D(x,z,0) ’ oD(x,z,t) i _
: 4( nz) (206 ” <00 =0

z=h+{

Consistency of surface velocity
(2,0 | A(x,z0) 0L (D) (1)
0z Ox Ox ot

=0

z=h+{

Representation of velocity potential from Taylor’s expansion:

2 A2 4
(D()C,Z,l‘)zq)(x,()’t)_z_a ?(X,O,t)+z_a o
2 Ox 41

(X,O,t)---

4
X


Presenter Notes
Presentation Notes
Back to non-linear equations using Taylor’s expansion.


Analysis of non-linear equations -- keeping the lowest
order nonlinear terms and include up to 4th order
derivatives in the linear terms. Let ¢@(x,7) = ®(x,0,¢)

Approximate form of Bernoulli equation evaluated at surface: z=h+ ¢

99, (h+{) ¢ L[99 P _
o 2 oon 2(5&) (UHQ ] g6 =0

_ 09 I’ 3 2(_¢j ‘=0

8t 2 Otox’ Ox
Approximate form of surface velocity expression :
¢) W o'¢ ¢
h+(x, ——=
(( o (%,0) ox ) 3lox* ot

These equations represent non-linear coupling of @(x,¢) and £ (x,¢).


Presenter Notes
Presentation Notes
Systematic keeping/limiting terms in non-linearity and in high order derivatives.      The highlighted equations are the coupled equations that we will analyze.


.

op I 0 ((M i

— | +g¢ =0.
o 2 orox j g6

Coupled equations: —
ox

((h+§(x 2w

X

3 oxt ot

Traveling wave solutions with new notation:
u=x—ct  Pp(x,0)=yw) and ¢(x,1)=n(u)

Note that the wave “speed” ¢ will be consistently
determined

dyw) b’ d’zw) 1(dy@)) B
‘ du 2 du’ 2( du j +gn(u) =0.
d dy))_ I d'z@w)  dn@) _
du ((h () du j 6 du’ du 0
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Presenter Notes
Presentation Notes
Decoupling the equations.


Integrating and re-arranging coupled equations

2 73 2
LAxw) ch” dy(w) | (dz(u)j 4 an(u) =0,
du 2 du’ 2 du
&, P e g ke, g
X cn 2;( (;c) A 2c3f7

d dyw)) I d4Z(U) L) _
du ((h+77(u)) du j 6 du du =0

dy(w) h d y(u)

= (h+ +cn(u) =0
()= == 5 tenw)
Now we can express dii’ () _ ' in terms of 7 :
u
,_ g kg , g
g 677 2c 20377


Presenter Notes
Presentation Notes
Analysis continued.


.

Integrating and re-arranging coupled equations — continued --
Expressing modified surface velocity equation in terms of n(u):

h2 2 h3
(h+77)(—§77— S - gc3f7j+—n"+cn 0

C 2c 2 6¢
gh) gh’ | g ghj
= |1 -= —=l1+=(n"=0
( czj 30277 c( 2¢” 7

:( ’Zf jn(u)—?n"(u)—%[n(u)]

Note: c¢”=gh+..


Presenter Notes
Presentation Notes
More derivations.


Solution of the famous Korteweg-de Vries equation

Modified surface amplitude equation in terms of 7

:( ;ng jn(u)—%n"(u)——[nw)] - 0.

Soliton solution

5 (x,1) =n(x —ct) =1, sech’ [ﬁ xz_hd)

c= \/1 g (1+ j where 77, 1s a constant



Presenter Notes
Presentation Notes
Finally arriving at the famous equation and the famous soliton solution.


Steps to solution
hg -

( jn(u)——n( )——[n(u)]
c’ 3

Iﬁl—?—% nw— "U——MM]

d

Multiply equation by '() = — y [ n°(u )——77 (u )——77 (u)j
u

Integrate wrt u and assume solution vanishes for u — oo

o1
2h77 *(u )_?77 (u) 2hn(u) 0
w%n:%fwxm—mm)

il 2 \/ 33 du > n(u) = T
_ h 3
(11~ 1) cosh’ ,/—nou
4h’
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Presenter Notes
Presentation Notes
More details.


.

£(xt) = n(x —ct) =, sech?| 2o X2

h  2h

Two soliton solutions with different amplitudes --

1=0.

-20 =10 0 10 20 30 40
X

11/14/2022 PHY 711 Fall 2022 -- Lecture 34 29


Presenter Notes
Presentation Notes
Visualization


Relationship to “standard” form of Korteweg-de Vries equation

New variables:
18227709 X = if’ and 7= 3 ct |
\ 24 \/ 2h 2n,h

Standard Korteweg-de Vries equation

3
87_7 + 6_2 =0.
Ot ox Ox

Soliton solution:

n(x,t)= g sech’ @(f — Bt) |.



Presenter Notes
Presentation Notes
Some notational manipulations.


More details
Modified surface amplitude equation in terms of 77 :

h h’ 3
( j’ )n(u)—?n (u )—E[n(u)]

Mo gh 0n dn 0On dn

Some 1dentities: —=1-—=-; =—Cc—; =—
c ot du ox du
Derivative of surface amplitude equation:
n, 3
——n"—-—nn'=0.
h —7n 3 n" ; nn'=

Expression in terms of x and ¢:

_mon _Kon 3 0n_ .
chot 3of nlox

Expression in terms of X and ¢:
877 o’n

—=0.
Ot ox 8x



Presenter Notes
Presentation Notes
More details.


Summary

Soliton solution

g(xat):U(X—Cl‘)ZUO SeChz(ﬁ xz_thj

c = =g (1 + j where 77, 18 a constant
1-n, /h



Presenter Notes
Presentation Notes
Summary.


.
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John Scott Russell and the solitary wave

Over one hundred and fifty vears ago., while conducting
experiments to determine the most efficient design for canal
boats, a young Scottish engineer named John Scott Russell (1808-
1882) made a remarkable scientific discovery. As he described it
in his "Report on Waves'": (Report of the fourteenth meeting of
the British Association for the Advancement of Science, York,
September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

tgi https://www.macs.hw.ac.uk/~chris/scott_russell.html

-

"I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful
phenomenon which I have called the Wave of Translation".

(Cet passage en francais)

This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of
Heriot-Watt University, Edinburgh.
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Presenter Notes
Presentation Notes
First observer of the soliton phenomenon.


https://www.macs.hw.ac.uk/%7Echris/scott_russell.html

Photo of canal soliton http://www.ma.hw.ac.uk/solitons/
(link no longer active)

11/14/2022 PHY 711 Fall 2022 -- Lecture 34
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Presenter Notes
Presentation Notes
Historic realization of the soliton wave in a channel.

http://www.ma.hw.ac.uk/solitons/
http://www.ma.hw.ac.uk/solitons/

Diederik Korteweg

Diederik Johannes Korteweg

Born 31 March 1848
Den Bosch

Died 10 May 1941 (aged 93)
Amsterdam

Nationality Dutch
Alma mater  University of Amsterdam

Known for Korteweg—de Vries equation,
Moens—Korteweg equationl']

Scientific career
Fields Mathematics

Institutions  University of Amsterdam

11/14/2022

Gustav de Vries

Born 22 January 1866
Amsterdam
Died 16 December 1934 (aged 68)

Nationality Duich

Alma mater University of Amsterdam

Known for Korteweg—De Vries equation
Scientific career

Fields Mathematics

PHY 711 Fall 2022 -- Lecture 34
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