PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes on Lecture 36: Chap. 12 in F \& W

Viscous fluids

1. Viscous stress tensor
2. Navier-Stokes equation
3. Example for incompressible fluid - Stokes "law"
4. Effects on linearize sound waves

31	Mon, 11/07/2022	Chap. 9	Linear sound waves	
$\mathbf{3 2}$	Wed, 11/09/2022	Chap. 9	Scattering of sound and non-linear effects	$\# 25$
$\mathbf{3 3}$	Fri, 11/11/2022	Chap. 10	Surface waves in fluids	$11 / 09 / 2022$
$\mathbf{3 4}$	Mon, 11/14/2022	Chap. 10	Surface waves in fluids; soliton solutions	
$\mathbf{3 5}$	Wed, 11/16/2022	Chap. 11	Heat conduction	$11 / 16 / 2022$
$\mathbf{3 6}$	Fri, 11/18/2022	Chap. 12	Viscous effects on hydrodynamics	
$\mathbf{3 7}$	Mon, 11/21/2022	Chap 1-12	Review	
	Wed, 11/23/2022		Thanksgiving Holiday	
Fri, 11/25/2022		Thanksgiving Holiday		
Mon, 11/28/2022		Presentations I		
Wed, 11/30/2022		Presentations II		
	Fri, 12/02/2022		Presentations III	

Equations for motion of non-viscous fluid

Newton-Euler equation of motion:
$\rho \frac{\partial \mathbf{v}}{\partial t}+\rho(\mathbf{v} \cdot \nabla) \mathbf{v}=\rho \mathbf{f}_{\text {applied }}-\nabla p$
Continuity equation:

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \quad \Rightarrow \mathbf{v}\left(\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})\right)=0
$$

Add the two equations:

Equations for motion of non-viscous fluid -- continued
Modified Newton-Euler equation in terms of fluid momentum:
$\frac{\partial(\rho \mathbf{v})}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{j} \mathbf{v}\right)}{\partial x_{j}}=\rho \mathbf{f}_{\text {applied }}-\nabla p$
$\frac{\partial(\rho \mathbf{v})}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{j} \mathbf{v}\right)}{\partial x_{j}}+\nabla p=\rho \mathbf{f}_{\text {applied }}$
Fluid momentum: $\quad \rho \mathbf{v}$
Stress tensor: $\quad T_{i j} \equiv \rho v_{i} v_{j}+p \delta_{i j}$
$i^{\text {th }}$ component of Newton-Euler equation:

$$
\frac{\partial\left(\rho v_{i}\right)}{\partial t}+\sum_{j=1}^{3} \frac{\partial T_{i j}}{\partial x_{j}}=\rho f_{i}
$$

Now consider the effects of viscosity

In terms of stress tensor:

$$
\begin{aligned}
& T_{i j}=T_{i j}^{\mathrm{ideal}}+T_{i j}^{\mathrm{viscous}} \\
& T_{i j}^{\mathrm{ideal}}=\rho v_{i} v_{j}+p \delta_{i j}=T_{j i}^{\mathrm{ideal}}
\end{aligned}
$$

As an example of a viscous effect, consider --
Newton's "law" of viscosity

$$
\frac{F_{x}}{A}=\eta \frac{\partial v_{x}}{\partial y}
$$

material dependent parameter

Effects of viscosity

Argue that viscosity is due to shear forces in a fluid of the form:

$$
\frac{F_{d r a g}}{A}=\eta \frac{\partial v_{x}}{\partial y}
$$

Formulate viscosity stress tensor with traceless and diagonal terms:

$$
T_{k l}^{\text {viscous }}=-\eta\left(\frac{\partial v_{k}}{\partial x_{l}}+\frac{\partial v_{l}}{\partial x_{k}}-\frac{2}{3} \delta_{k l}(\nabla \cdot \mathbf{v})\right)-\zeta \delta_{k l}(\nabla \cdot \mathbf{v})
$$

Total stress tensor: $T_{k l}=T_{k l}^{\text {ideal }}+T_{k l}^{\text {viscous }}$

$$
T_{k l}^{\text {ideal }}=\rho v_{k} v_{l}+p \delta_{k l}
$$

$$
T_{k l}^{\mathrm{viscous}}=-\eta\left(\frac{\partial v_{k}}{\partial x_{l}}+\frac{\partial v_{l}}{\partial x_{k}}-\frac{2}{3} \delta_{k l}(\nabla \cdot \mathbf{v})\right)-\zeta \delta_{k l}(\nabla \cdot \mathbf{v})
$$

Effects of viscosity -- continued

Incorporating generalized stress tensor into Newton-Euler equations
$\frac{\partial\left(\rho v_{i}\right)}{\partial t}+\sum_{i=1}^{3} \frac{\partial T_{i j}}{\partial x_{j}}=\rho f_{i}$
$\frac{\partial\left(\rho v_{i}\right)}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{i} v_{j}\right)}{\partial x_{j}}=\rho f_{i}-\frac{\partial p}{\partial x_{i}}+\eta \sum_{j=1}^{3} \frac{\partial^{2} v_{i}}{\partial x_{j}^{2}}+\left(\zeta+\frac{1}{3} \eta\right) \sum_{j=1}^{3} \frac{\partial^{2} v_{j}}{\partial x_{i} \partial x_{j}}$
Continuity equation
$\frac{\partial \rho}{\partial t}+\sum_{j=1}^{3} \frac{\partial\left(\rho v_{j}\right)}{\partial x_{j}}=0$
Vector form (Navier-Stokes equation)
$\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})$
${ }^{\partial}$ Continuity equation
$\frac{\partial \rho}{\partial t_{1 / 1 / 8 / 2022}}+\nabla \cdot(\rho \mathbf{v})=0$

Newton-Euler equations for viscous fluids
Navier-Stokes equation

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})
$$

Continuity condition

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Typical viscosities at $20^{\circ} \mathrm{C}$ and 1 atm :

Fluid	$\eta / \rho\left(\mathrm{m}^{2} / \mathrm{s}\right)$	$\eta(\mathrm{Pa} \mathrm{s})$
Water	1.00×10^{-6}	1×10^{-3}
Air	14.9×10^{-6}	0.018×10^{-3}
Ethyl alcohol	1.52×10^{-6}	1.2×10^{-3}
Glycerine	1183×10^{-6}	1490×10^{-3}

Example - steady flow of an incompressible fluid in a long pipe with a circular cross section of radius R
Navier-Stokes equation
$\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})$
Continuity condition
$\frac{\partial \rho}{\partial}+\nabla \cdot(\rho \mathbf{v})=0 \quad$ Note that $\nabla \times(\nabla \times \mathbf{v})=\nabla(\nabla \cdot \mathbf{v})-\nabla^{2} \mathbf{v}$
Incompressible fluid $\Rightarrow \nabla \cdot \mathbf{v}=0$
Steady flow

$$
\Rightarrow \frac{\partial \mathbf{v}}{\partial t}=0
$$

Irrotational flow
$\Rightarrow \nabla \times \mathbf{v}=0$
No applied force

$$
\Rightarrow \mathbf{f}=0
$$

Neglect non-linear terms $\Rightarrow \nabla\left(v^{2}\right)=0$

Example - steady flow of an incompressible fluid in a long pipe with a circular cross section of radius R-- continued

Navier-Stokes equation becomes:
$0=-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}$
Assume that $\mathbf{v}(\mathbf{r}, t)=v_{z}(r) \hat{\mathbf{z}}$
$\frac{\partial p}{\partial z}=\eta \nabla^{2} v_{z}(r) \quad$ (independent of $\left.z\right)$
Suppose that $\frac{\partial p}{\partial z}=-\frac{\Delta p}{L}$
(uniform pressure gradient)
$\Rightarrow \nabla^{2} v_{z}(r)=-\frac{\Delta p}{\eta L}$

Example - steady flow of an incompressible fluid in a long pipe with a circular cross section of radius R-- continued

$$
\begin{aligned}
& \nabla^{2} v_{z}(r)=-\frac{\Delta p}{\eta L} \\
& \frac{1}{r} \frac{d}{d r} r \frac{d v_{z}(r)}{d r}=-\frac{\Delta p}{\eta L} \\
& v_{z}(r)=-\frac{\Delta p r^{2}}{4 \eta L}+C_{1} \ln (r)+\mathrm{C}_{2}
\end{aligned}
$$

$$
\Rightarrow C_{1}=0 \quad v_{z}(R)=0=-\frac{\Delta p R^{2}}{4 \eta L}+\mathrm{C}_{2}
$$

$$
v_{z}(r)=\frac{\Delta p}{4 \eta L}\left(R^{2}-r^{2}\right)
$$

Comment on boundary condition

$$
v_{z}(R)=0
$$

Fluid approximately stationary at boundary

Example - steady flow of an incompressible fluid in a long pipe with a circular cross section of radius R-- continued

$$
v_{z}(r)=\frac{\Delta p}{4 \eta L}\left(R^{2}-r^{2}\right)
$$

Mass flow rate through the pipe:

$$
\frac{d M}{d t}=2 \pi \rho \int_{0}^{R} r d r v_{z}(r)=\frac{\Delta p \rho \pi R^{4}}{8 \eta L}
$$

Poiseuille formula;
\rightarrow Method for measuring η

Example - steady flow of an incompressible fluid in a long tube with a circular cross section of outer radius R and inner radius κR

Example - steady flow of an incompressible fluid in a long tube with a circular cross section of outer radius R and inner radius κR-- continued

Solving for C_{1} and C_{2} :

More discussion of viscous effects in incompressible fluids
Stokes' analysis of viscous drag on a sphere of radius R moving at speed u in medium with viscosity η :
$F_{D}=-\eta(6 \pi R u)$

Plan:

1. Consider the general effects of viscosity on fluid equations
2. Consider the solution to the linearized equations for the case of steady-state flow of a sphere of radius R
3. Infer the drag force needed to maintain the steady-state flow

Have you ever encountered Stokes law in previous contexts?
a. Milliken oil drop experiment
b. A sphere falling due to gravity in a viscous fluid, reaching a terminal velocity
c. Other?

Newton-Euler equation for incompressible fluid, modified by viscous contribution (Navier-Stokes equation):
$\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}_{\text {applied }}-\frac{\nabla p}{\rho}+\underbrace{\frac{\eta}{\rho}}_{\cup} \nabla^{2} \mathbf{v}$
Typical kinematic viscosities at $20^{\circ} \mathrm{C}$ and 1 atm :

Fluid	$\quad v\left(\mathrm{~m}^{2} / \mathrm{s}\right)$
Water	1.00×10^{-6}
Air	14.9×10^{-6}
Ethyl alcohol	1.52×10^{-6}
Glycerine	1183×10^{-6}

Stokes' analysis of viscous drag on a sphere of radius R moving at speed u in medium with viscosity η :
$F_{D}=-\eta(6 \pi R u)$

Effects of drag force on motion of particle of mass m with constant force F :

$$
\begin{aligned}
& F-6 \pi R \eta u=m \frac{d u}{d t} \quad \text { with } u(0)=0 \\
& \Rightarrow u(t)=\frac{F}{6 \pi R \eta}\left(1-e^{-\frac{6 \pi R \eta_{t}}{m} t}\right)
\end{aligned}
$$

Effects of drag force on motion of

particle of mass m with constant force F :

$$
\begin{aligned}
& F-6 \pi R \eta u=m \frac{d u}{d t} \quad \text { with } u(0)=0 \\
& \Rightarrow u(t)=\frac{F}{6 \pi R \eta}\left(1-e^{-\frac{6 \pi R \eta}{m} t}\right) \quad
\end{aligned}
$$

Effects of drag force on motion of particle of mass m

 with an initial velocity with $u(0)=U_{0}$ and no external force$$
\begin{aligned}
& -6 \pi R \eta u=m \frac{d u}{d t} \\
& \Rightarrow u(t)=U_{0} e^{-\frac{6 \pi R \eta}{m} t}
\end{aligned}
$$

Determine the form of the velocity potential for an incompressible fluid representing uniform velocity in the \mathbf{z} direction at large distances from a spherical obstruction of radius a. Find the form of the velocity potential and the velocity field for all $r>a$. Assume that for $r=a$, the velocity in the radial direction is 0 but the velocity in the azimuthal direction is not necessarily 0 .

$$
\nabla^{2} \Phi=0
$$

$$
\Phi(r, \theta)=-v_{0}\left(r+\frac{a^{3}}{2 r^{2}}\right) \cos \theta
$$

In the present viscous case, we
 will assume that $\mathbf{v}(a)=0$.

Newton-Euler equation for incompressible fluid, modified by viscous contribution (Navier-Stokes equation):
$\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}_{\text {applied }}-\frac{\nabla p}{\rho}+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}$
Continuity equation: $\nabla \cdot \mathbf{v}=0$
Assume steady state: $\Rightarrow \frac{\partial \mathbf{v}}{\partial t}=0$
Assume non-linear effects small
Initially set $\mathbf{f}_{\text {applied }}=0$;
$\Rightarrow \nabla p=\eta \nabla^{2} \mathbf{v}$
$\nabla p=\eta \nabla^{2} \mathbf{v}$
Take curl of both sides of equation:
$\nabla \times(\nabla p)=0=\eta \nabla^{2}(\nabla \times \mathbf{v})$
Assume (with a little insight from Landau):
$\mathbf{v}=\nabla \times(\nabla \times f(r) \mathbf{u})+\mathbf{u}$
where $f(r) \xrightarrow[r \rightarrow \infty]{ } 0$
Note that:
$\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$

Digression
Some comment on assumption: $\quad \mathbf{v}=\nabla \times(\nabla \times f(r) \mathbf{u})+\mathbf{u}$ $\nabla \times(\nabla \times \mathbf{A})=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}$
Here $\mathbf{A}=f(r) \mathbf{u}$
$\nabla \times \mathbf{v}=\nabla \times(\nabla \times(\nabla \times \mathbf{A}))=-\nabla \times\left(\nabla^{2} \mathbf{A}\right)$
Also note: $\quad \nabla p=\eta \nabla^{2} \mathbf{v}$
$\Rightarrow \nabla \times \nabla p=0=\nabla \times \eta \nabla^{2} \mathbf{v} \quad$ or $\quad \nabla^{2}(\nabla \times \mathbf{v})=0$
$\nabla^{2}\left(\nabla \times \nabla^{2} \mathbf{A}\right)=\nabla^{4}(\nabla \times \mathbf{A})=0$

$$
\begin{aligned}
& \mathbf{v}=\nabla \times(\nabla \times f(r) \mathbf{u})+\mathbf{u} \\
& \mathbf{u}=u \hat{\mathbf{z}} \\
& \nabla \times(\nabla \times f(r) \hat{\mathbf{z}})=\nabla(\nabla \cdot f(r) \hat{\mathbf{z}})-\nabla^{2} f(r) \hat{\mathbf{z}} \\
& \nabla \times \mathbf{v}=0 \quad \Rightarrow \nabla^{2}(\nabla \times \mathbf{v})=0 \\
& \nabla^{4}(\nabla \times f(r) \hat{\mathbf{z}})=0 \quad \Rightarrow \nabla^{4}(\nabla f(r) \times \hat{\mathbf{z}})=0 \quad \Rightarrow \nabla^{4} f(r)=0 \\
& f(r)=C_{1} r^{2}+C_{2} r+C_{3}+\frac{C_{4}}{r} \\
& v_{r}=u \cos \theta\left(1-\frac{2}{r} \frac{d f}{d r}\right)=u \cos \theta\left(1-4 C_{1}-\frac{2 C_{2}}{r}+\frac{2 C_{4}}{r^{3}}\right) \\
& v_{\theta}=-u \sin \theta\left(1-\frac{d^{2} f}{d r^{2}}-\frac{1}{r} \frac{d f}{d r}\right)=-u \sin \theta\left(1-4 C_{1}-\frac{C_{2}}{r}-\frac{C_{4}}{r^{3}}\right)
\end{aligned}
$$

Some details:

$$
\begin{aligned}
& \nabla^{4} f(r)=0 \quad \Rightarrow\left(\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}\right)^{2} f(r)=0 \\
& f(r)=C_{1} r^{2}+C_{2} r+C_{3}+\frac{C_{4}}{r} \\
& \mathbf{v}=u(\nabla \times(\nabla \times f(r) \hat{\mathbf{z}})+\hat{\mathbf{z}}) \\
& \quad=u\left(\nabla(\nabla \cdot(f(r) \hat{\mathbf{z}}))-\nabla^{2} f(r) \hat{\mathbf{z}}+\hat{\mathbf{z}}\right)
\end{aligned}
$$

Note that: $\hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}}$
$\mathbf{v}=u\left(\nabla\left(\frac{d f}{d r} \cos \theta\right)-\left(\nabla^{2}(f(r))-1\right)(\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}})\right)$

$$
\begin{aligned}
& v_{r}=u \cos \theta\left(1-\frac{2}{r} \frac{d f}{d r}\right)=u \cos \theta\left(1-4 C_{1}-\frac{2 C_{2}}{r}+\frac{2 C_{4}}{r^{3}}\right) \\
& v_{\theta}=-u \sin \theta\left(1-\frac{d^{2} f}{d r^{2}}-\frac{1}{r} \frac{d f}{d r}\right)=-u \sin \theta\left(1-4 C_{1}-\frac{C_{2}}{r}-\frac{C_{4}}{r^{3}}\right)
\end{aligned}
$$

To satisfy $\mathbf{v}(r \rightarrow \infty)=\mathbf{u}: \quad \Rightarrow C_{1}=0$
To satisfy $\mathbf{v}(R)=0 \quad$ solve for C_{2}, C_{4}
$v_{r}=u \cos \theta\left(1-\frac{3 R}{2 r}+\frac{R^{3}}{2 r^{3}}\right)$
$v_{\theta}=-u \sin \theta\left(1-\frac{3 R}{4 r}-\frac{R^{3}}{4 r^{3}}\right)$
$v_{r}=u \cos \theta\left(1-\frac{3 R}{2 r}+\frac{R^{3}}{2 r^{3}}\right)$
$v_{\theta}=-u \sin \theta\left(1-\frac{3 R}{4 r}-\frac{R^{3}}{4 r^{3}}\right)$
Determining pressure:

$$
\begin{aligned}
& \nabla p=\eta \nabla^{2} \mathbf{v}=-\eta \nabla\left(u \cos \theta\left(\frac{3 R}{2 r^{2}}\right)\right) \\
& \Rightarrow p(r)=p_{0}-\eta u \cos \theta\left(\frac{3 R}{2 r^{2}}\right)
\end{aligned}
$$

$$
p(r)=p_{0}-\eta u \cos \theta\left(\frac{3 R}{2 r^{2}}\right)
$$

Corresponds to:

$$
\begin{aligned}
& F_{D} \cos \theta=\left(p(R)-p_{0}\right) 4 \pi R^{2}=-\eta u \cos \theta(6 \pi R) \\
& \Rightarrow \mathrm{F}_{D}=-\eta u(6 \pi R)
\end{aligned}
$$

Additional effects of viscosity - allowing for changes in entropy

$$
p(\rho, s)=p_{0}+\left(\frac{\partial p}{\partial \rho}\right)_{s} \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \delta s
$$

Newton-Euler equations for viscous fluids
Navier-Stokes equation

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})
$$

Continuity condition

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Newton-Euler equations for viscous fluids - effects on sound Without viscosity terms:

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p \quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Assume: $\mathbf{v}=0+\delta \mathbf{v} \quad \mathbf{f}=0 \quad \rho=\rho_{0}+\delta \rho$

$$
p=p_{0}+\delta p=p_{0}+\left(\frac{\partial p}{\partial \rho}\right)_{s} \delta \rho \equiv p_{0}+c^{2} \delta \rho
$$

Linearized equations: $\frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho \quad \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0$
Let $\delta \mathbf{v} \equiv \delta \mathbf{v}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \quad \delta \rho \equiv \delta \rho_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$

Sound waves without viscosity -- continued
Linearized equations: $\frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho \quad \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0$
Let $\delta \mathbf{v} \equiv \delta \mathbf{v}_{0} e^{i(\mathbf{k} \mathbf{r}-\omega t)} \quad \delta \rho \equiv \delta \rho_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$
$\frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho$
$\Rightarrow \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}$
$\frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0$
$\Rightarrow-\omega \delta \rho_{0}+\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0$
$\Rightarrow k^{2}=\frac{\omega^{2}}{c^{2}}$

$$
\frac{\delta \rho_{0}}{\rho_{0}}=\frac{\hat{\mathbf{k}} \cdot \delta \mathbf{v}_{0}}{c}
$$

\rightarrow Pure longitudinal harmonic wave solutions

Newton-Euler equations for viscous fluids - effects on sound Recall full equations:

Navier-Stokes equation

$$
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v})
$$

Continuity condition

$$
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0
$$

Assume: $\mathbf{v}=0+\delta \mathbf{v} \quad \mathbf{f}=0 \quad \rho=\rho_{0}+\delta \rho$

$$
\begin{aligned}
& p=p_{0}+\delta p=p_{0}+c^{2} \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \delta s \\
& \text { where } c^{2} \equiv\left(\frac{\partial p}{\partial \rho}\right)_{s} \\
& \begin{array}{l}
\text { viscosity } \\
\text { causes heat } \\
\text { transfer }
\end{array}
\end{aligned}
$$

Newton-Euler equations for viscous fluids - effects on sound Note that pressure now depends both on density and entropy so that entropy must be coupled into the equations

$$
\begin{array}{lc}
\frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v}) \\
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 & \rho T \frac{\partial s}{\partial t}=k_{t h} \nabla^{2} T
\end{array}
$$

Assume: $\mathbf{v}=0+\delta \mathbf{v} \quad \mathbf{f}=0$

$$
\rho=\rho_{0}+\delta \rho
$$

$$
\begin{aligned}
p & =p_{0}+\delta p=p_{0}+c^{2} \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \delta s \quad \text { where } c^{2} \equiv\left(\frac{\partial p}{\partial \rho}\right)_{s} \\
T & =T_{0}+\delta T=T_{0}+\left(\frac{\partial T}{\partial \rho}\right)_{s} \delta \rho+\left(\frac{\partial T}{\partial s}\right)_{\rho} \delta s \\
s & =s_{0}+\delta s
\end{aligned}
$$

Newton-Euler equations for viscous fluids linearized equations

$$
\begin{aligned}
& \frac{\partial \mathbf{v}}{\partial t}+(\mathbf{v} \cdot \nabla) \mathbf{v}=\mathbf{f}-\frac{1}{\rho} \nabla p+\frac{\eta}{\rho} \nabla^{2} \mathbf{v}+\frac{1}{\rho}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \mathbf{v}) \\
& \Rightarrow \frac{\partial \delta \mathbf{v}}{\partial t}=-\underbrace{\frac{1}{\rho_{0}} \nabla \delta p+\frac{\eta}{\rho} \nabla^{2} \delta \mathbf{v}+\frac{1}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \delta \mathbf{v})} \\
&-\frac{1}{\rho_{0}}\left\{\left(\frac{\partial p}{\partial \rho}\right)_{s} \nabla \delta \rho+\left(\frac{\partial p}{\partial s}\right)_{\rho} \nabla \delta s\right\}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho-\rho_{0}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla \delta s
\end{aligned}
$$

Digression -- from the first law of thermodynamics:

$$
\begin{aligned}
& d \epsilon=T d s+\frac{p}{\rho^{2}} d \rho \\
& \left(\frac{\partial}{\partial \rho}\left(\frac{\partial \epsilon}{\partial s}\right)_{\rho}\right)_{s}=\left(\frac{\partial T}{\partial \rho}\right)_{s} \Leftrightarrow\left(\frac{\partial}{\partial s}\left(\frac{\partial \epsilon}{\partial \rho}\right)_{s}\right)_{\rho}=\left(\frac{\partial p / \rho^{2}}{\partial s}\right)_{\rho} \approx \frac{1}{\rho_{0}^{2}}\left(\frac{\partial p}{\partial s}\right)_{\rho}
\end{aligned}
$$

Newton-Euler equations for viscous fluids linearized equations

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{v})=0 \\
& \Rightarrow \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0 \\
& \rho T \frac{\partial s}{\partial t}=k_{t h} \nabla^{2} T \\
& \Rightarrow \frac{\partial \delta s}{\partial t}=\frac{k_{t h}}{\rho_{0} T_{0}}\left(\left(\frac{\partial T}{\partial s}\right)_{\rho} \nabla^{2} \delta s+\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho\right)
\end{aligned}
$$

Further relationships:

$$
\left(\frac{\partial T}{\partial s}\right)_{\rho} \approx \frac{T_{0}}{c_{v}} \quad \kappa=\frac{k_{t h}}{\rho c_{p}}
$$

heat capacity at constant volume

Newton-Euler equations for viscous fluids linearized equations
$\Rightarrow \frac{\partial \delta s}{\partial t}=\left(\gamma \kappa \nabla^{2} \delta s+\frac{c_{p} \kappa}{T_{0}}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho\right) \quad$ where $\gamma \equiv \frac{c_{p}}{c_{v}}$

Newton-Euler equations for viscous fluids - effects on sound Linearized equations (with the help of various thermodynamic relationships):

$$
\begin{aligned}
& \frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho-\rho_{0}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla \delta s+\frac{\eta}{\rho_{0}} \nabla^{2} \delta \mathbf{v}+\frac{1}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \delta \mathbf{v}) \\
& \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0 \\
& \frac{\partial \delta s}{\partial t}=\gamma \kappa \nabla^{2} \delta s+\frac{c_{p} \kappa}{T_{0}}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho
\end{aligned}
$$

Here: $\quad \gamma=\frac{c_{p}}{c_{v}}$

$$
\kappa=\frac{k_{t h}}{c_{p} \rho_{0}}
$$

Linearized hydrodynamic equations

$$
\begin{aligned}
& \frac{\partial \delta \mathbf{v}}{\partial t}=-\frac{c^{2}}{\rho_{0}} \nabla \delta \rho-\rho_{0}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla \delta s+\frac{\eta}{\rho_{0}} \nabla^{2} \delta \mathbf{v}+\frac{1}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \nabla(\nabla \cdot \delta \mathbf{v}) \\
& \frac{\partial \delta \rho}{\partial t}+\rho_{0} \nabla \cdot(\delta \mathbf{v})=0 \\
& \frac{\partial \delta s}{\partial t}=\gamma \kappa \nabla^{2} \delta s+\frac{c_{p} \kappa}{T_{0}}\left(\frac{\partial T}{\partial \rho}\right)_{s} \nabla^{2} \delta \rho
\end{aligned}
$$

It can be shown that
$\left(\frac{\partial T}{\partial \rho}\right)_{s}=\frac{T c^{2} \beta}{\rho c_{p}} \quad$ where $\quad \beta \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{p} \quad$ (thermal expansion)

Let $\quad \delta \mathbf{v} \equiv \delta \mathbf{v}_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \quad \delta \rho \equiv \delta \rho_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)} \quad \delta s \equiv \delta s_{0} e^{i(\mathbf{k} \cdot \mathbf{r}-\omega t)}$

Linearized hydrodynamic equations; plane wave

 solutions:$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}+\frac{T_{0} \beta c^{2}}{c_{p}} \delta s_{0} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}-\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}
\end{aligned}
$$

In the absense of thermal expansion, $\beta=0$

$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}
\end{aligned}
$$

\rightarrow Entropy and mechanical modes are independent

Linearized hydrodynamic equations; full plane wave solutions:

$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}+\frac{T_{0} \beta c^{2}}{c_{p}} \delta s_{0} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}-\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}
\end{aligned}
$$

Longitudinal solutions: $\quad(\delta \mathbf{v} \cdot \mathbf{k} \neq 0)$:

$$
\begin{aligned}
& \left(\omega^{2}-c^{2} k^{2}+i \frac{\omega k^{2}}{\rho_{0}}\left(\frac{4}{3} \eta+\zeta\right)\right) \delta \rho_{0}-\frac{\rho_{0} T_{0} \beta c^{2} k^{2}}{c_{p}} \delta s_{0}=0 \\
& \frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}+\left(\omega+i \gamma \kappa k^{2}\right) \delta s_{0}=0
\end{aligned}
$$

Linearized hydrodynamic equations; full plane wave solutions:
Longitudinal solutions: $(\delta \mathbf{v} \cdot \mathbf{k} \neq 0)$:
$\left(\omega^{2}-c^{2} k^{2}+i \frac{\omega k^{2}}{\rho_{0}}\left(\frac{4}{3} \eta+\zeta\right)\right) \delta \rho_{0}-\frac{\rho_{0} T_{0} \beta c^{2} k^{2}}{c_{p}} \delta s_{0}=0$
$\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}+\left(\omega+i \gamma \kappa k^{2}\right) \delta s_{0}=0$

Approximate solution: $\quad k=\frac{\omega}{c}+i \alpha$
where $\alpha \approx \frac{\omega^{2}}{2 c^{3} \rho_{0}}\left(\frac{4}{3} \eta+\zeta\right)+\frac{\kappa T_{0} \beta^{2} \omega^{2}}{2 c_{p} c}$
$\delta \rho=\delta \rho_{0} e^{-\alpha \hat{\mathbf{k}} \cdot \mathbf{r}} e^{i \frac{\omega}{c}(\hat{\mathbf{k}} \cdot \mathbf{r}-c t)}$

Linearized hydrodynamic equations; full plane wave solutions:

$$
\begin{aligned}
& \omega \delta \mathbf{v}_{0}=\frac{c^{2} \delta \rho_{0}}{\rho_{0}} \mathbf{k}+\frac{T_{0} \beta c^{2}}{c_{p}} \delta s_{0} \mathbf{k}-\frac{i \eta k^{2}}{\rho_{0}} \delta \mathbf{v}_{0}-\frac{i}{\rho_{0}}\left(\zeta+\frac{1}{3} \eta\right) \mathbf{k}\left(\mathbf{k} \cdot \delta \mathbf{v}_{0}\right) \\
& \omega \delta \rho_{0}-\rho_{0} \mathbf{k} \cdot \delta \mathbf{v}_{0}=0 \\
& \omega \delta s_{0}=-i \gamma \kappa k^{2} \delta s_{0}-\frac{i \kappa \beta c^{2}}{\rho_{0}} k^{2} \delta \rho_{0}
\end{aligned}
$$

Transverse modes $(\delta \mathbf{v} \cdot \mathbf{k}=0)$:

$$
\begin{aligned}
& \delta \rho_{0}=0 \quad \delta s_{0}=0 \\
& \left(\omega+\frac{i \eta k^{2}}{\rho_{0}}\right)(\delta \mathbf{v} \times \mathbf{k})=0 \quad k= \pm\left(\frac{i \omega \rho_{0}}{\eta}\right)^{1 / 2}
\end{aligned}
$$

