PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 36: Chap.12inF & W

Viscous fluids
1. Viscous stress tensor

2. Navier-Stokes equation

3. Example for incompressible fluid — Stokes “law”

4. Effects on linearize sound waves
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Presenter Notes
Presentation Notes
In this lecture, we will consider some effects of viscosity on the motion of fluids, following Chapter 12 of your textbook.


31 Mon, 11/07/2022 (Chap. 9 Linear sound waves #24 11/09/2022

32 Wed, 11/09/2022 (Chap. 9 Scattering of sound and non-linear effects %25 11/11/2022
33 Fri, 11/11/2022  |Chap. 10 Surface waves in fluids #206 11/16/2022

34 Mon, 11/14/2022 (Chap. 10 Surface waves in fluids; soliton solutions

39 |Wed, 11/16/2022 (Chap. 11 Heat conduction

36 Fri, 11/18/2022 |Chap. 12 Viscous effects on hydrodynamics

37|Mon, 11/21/2022 (Chap 1-12  |Review

Wed, 11/23/2022 Thanksgiving Holiday
Fri, 11/25/2022 Thanksgiving Holiday
Mon, 11/28/2022 Presentations |

Wed, 11/30/2022 Presentations ||

Fri, 12/02/2022 Presentations Il|
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Presenter Notes
Presentation Notes
Schedule.


B
Equations for motion of non-viscous fluid

Newton-Euler equation of motion:

ov
p5+p(v'v)vzpfapplied _Vp

Continuity equation:

Z_€+V.(pv)zo = V(a—p-FV(IOV)j:O

Add the two equations:

8V+8,0

(Oﬁt ot

v+ p(Vv-V)V+vV-(pv)=pf ., —VP
] |\ J

! 3 8(pv.v)
ol pv /
3

ot /=1



Presenter Notes
Presentation Notes
Reviewing the fluid equations that we have discussed previously, combining Newton’s equations with the continuity equation to find a new convenient form.


Equations for motion of non-viscous fluid -- continued

Modified Newton-Euler equation in terms of fluid momentum:

,OV 3 PV, ¥
— QT JZ:, ( Gx ) = pf applicd — YD

3 0 pv,v
+ Z (5)6] )+Vp P fapplled

J=1 J

Fluid momentum:  pv

Stress tensor: T, =pvyv, + po,

" component of Newton-Euler equation:

0(pv,) , 0T _
ot +;@xj =P/



Presenter Notes
Presentation Notes
Here we recognize terms that have the  units of force/area and can be described as a stress tensor Tij.


Now consider the effects of viscosity

In terms of stress tensor:
1deal viscous

Tl] - ZJ +1, ij

1deal

ideal .
T _pvzv'_l_pé‘ij_]}i

As an example of a viscous effect, consider --

Newton's "law" of viscosity
F ov,

X

A f@y y

material dependent parameter
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Presenter Notes
Presentation Notes
The next step is to imagine that the additional effects of viscosity should/can be represented as a viscous stress tensor.     The example of sheer force suggests that the viscous stress tensor involves derivatives of the velocity of the fluid.


Effects of viscosity
Argue that viscosity 1s due to shear forces in a fluid of the form:

F drag avx

A oy

Formulate viscosity stress tensor with traceless and diagonal terms:

iscous 6 a 2
I ——n[ . Vf——akl(v-v)]—wk,(v-w

ox, Ox, 3 '

bulk viscosity

viscosity
Total stress tensor: 7, = Tkl'ldeal 4 Tk;iscous
ideal
T = pvv, + po,
ov, le 2

ox ox, — §5k, (V - V)j — (0, (V - V)

Viscous _
1 —7] (
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Presenter Notes
Presentation Notes
Imagining the most general form of the viscous tensor, we consider all derivatives of all components of fluid velocity, separating out the terms with zero trace, with the remaining terms proportional to the divergence of the velocity and representing the “bulk” viscosity.


‘Effects of viscosity -- continued
Incorporating generalized stress tensor into Newton-Euler equations

o(pv;) <97,
ot +,Z:1: oy =P,
a(pvl.) 5(,0\/1-\/]) 0*v

Continuity equation

8—'0+Z3:a pv].):O

o 5 O,
Vector form (Navier-Stokes equation)
ov

—+(v-V)v=f —le +£Vzv+l(§+lnjV(V V)
5/ : P Jo, 3
Continuity equation

ap
V-(pv)=0
—+V-(pv)


Presenter Notes
Presentation Notes
Now we can write the fluid equations with the full stress tensor.    The continuity equation still applies.   The so-called Navier-Stokes equation summarizes the expected behavior of fluids in terms of the material dependent viscosity parameters eta and zera.


Newton-Euler equations for viscous fluids

Navier-Stokes equation

1
@—I—(V V)V f—le—I—anV—l- (§+ U]V(V-V)
ot P P p 3
Continuity condition
ap
+V-(pv)=0
= Vo (ov)

Typical viscosities at 20° C and 1 atm:

____Fluid | __np(m¥s) | n(Pas)

Water 1.00 x 10 1x103
Air 14.9 x 106 0.018 x 103
Ethyl alcohol 1.52 x 10° 1.2x 103
Glycerine 1183 x 10 1490 x 103
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Presenter Notes
Presentation Notes
Here is a list of some typical values of the viscosity parameter eta.


®
Example — steady flow of an incompressible fluid in a long

pipe with a circular cross section of radius R
Navier-Stokes equation

6—V+(v V)v f—leJr T2y 4 — (§+ 177]V(V.v)
ot P P P 3
Continuity condition

Note that Vx(Vxv)=V(V-v)-V’v
P (pv)=0 W =v¥y)
Incompressible fluild = V-v=0

0
Steady flow = 2o

ot
Irrotational flow = Vxv=0

No applied force = =0

Neglect non-linear terms = V (vz) =0


Presenter Notes
Presentation Notes
Example of a measurement of viscosity for irrotational flow.


Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

Navier-Stokes equation becomes:

1
0=——Vp+Lyy -
P P
Assume that v(r,t)=v,_(r)z L
op
P =nV*v,(r) (independent of z)
yA —
Suppose that — 8p _Ap
oz L (uniform pressure gradient)
= Vi (r) = _Ap
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Presenter Notes
Presentation Notes
Continued analysis of simple viscous flowl


Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

1d rdvz(r) :_A_p
rdr dr nL
Apr?
4nL

v.(r)=-— +C, In(r)+ C,

ApR’

=G=0  w(®)=0=-77

+C,

v.(r)= 4A77—P;,(R2 — rz)
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Presenter Notes
Presentation Notes
Solving for the velocity profile.


Comment on boundary condition
v.(R)=0

Fluid approximately stationary
at boundary

—

R
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Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

v.(r)= R —r
(=g (g2
Mass flow rate through the pipe:

dM R
? = 27Z'pj0 VdI’VZ (I") =

Appr R’
8nL

Poiseuille formula;
=>Method for measuring n

11/18/2022 PHY 711 Fall 2022 -- Lecture 36


Presenter Notes
Presentation Notes
This analysis is useful for measuring eta.


Example — steady flow of an incompressible fluid in a long
tube with a circular cross section of outer radius R and inner
radius xR

1d rdvz(r) _ Ap
rdr dr nL

Apr’

v (r)=-— +C In(r)+C
(7) L O (r)+C,

ApR’
v.(R)=0=-""_1C In(R)+C,

4nL

22

V.(KkR) = __Apx'K +C, In(xR) + C,

- AnL
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Presenter Notes
Presentation Notes
Another related system with a cylindrical shell.


Example — steady flow of an incompressible fluid in a long
tube with a circular cross section of outer radius R and inner
radius kR -- continued

-

dM R
? = 272;0ij I”dVVZ (I") =

11/18/2022

Solving for C, and C, :

_ApR2 B
v (r) = 477L[ (

Mass flow rate through the pipe:
(1-x)

Appr R’

3nL
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Presenter Notes
Presentation Notes
The final result again can be used to measure the viscosity.


More discussion of viscous effects in incompressible fluids

Stokes' analysis of viscous drag on a sphere of radius R

moving at speed u 1n medium with viscosity 77 :
F,=-n (672Ru)

Plan: o

1. Consider the gener
equations

2. Consider the solution to the linearized equations
for the case of steady-state flow of a sphere of
radius R

3. Infer the drag force needed to maintain the
steady-state flow
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Presenter Notes
Presentation Notes
Changing to an analysis of  viscous flow as a drag force.


Have you ever encountered Stokes law in previous

contexts?

a. Milliken oil drop experiment

b. A sphere falling due to gravity in a viscous fluid,
reaching a terminal velocity

c. Other?



Newton-Euler equation for incompressible fluid,

modified by viscous contribution (Navier-Stokes equation):

V
Z—V+(V-V)V=fapphed— p+77V2V
[

£ob

v  Kinematic viscosity

Typical kinematic viscosities at 20° C and 1 atm:

_ Fluid | v(mls)
Water 1.00 x 106
Air 14.9 x 10°
Ethyl alcohol 1.52 x 10°
Glycerine 1183 x 10°
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Presenter Notes
Presentation Notes
In this case, we will consider an incompressible fluid in which case eta/rho is the important parameter.


®
Stokes' analysis of viscous drag on a sphere of radius R

moving at speed 1 1n medium with viscosity 77 :

Effects of drag force on motion of

particle of mass m with constant force F :

F—67zR77u=m% with u#(0)=0

_67R7
:u(t)=6]; El—e ’”tj
R 7
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Presenter Notes
Presentation Notes
Before deriving Stokes law of viscous drag, it is interesting to recall its effects.


&
Effects of drag force on motion of

particle of mass m with constant force F :

F—6rRnu = m% with #(0)=0
_67R7
= u(t) = ! l—e m
67Rn

60
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Presenter Notes
Presentation Notes
Objects moving in the presence of the Stokes viscous drag, tend to read a steady “terminal” velocity.


®)

Effects of drag force on motion of particle of mass m
with an 1nitial velocity with #(0) = U, and no external force

—67TRnu = m@
dt

_6ﬁRnt
=>u)=U,e "

1.0

0.9
08
0.7
0.6
U os
04
03
02

0.1

0 1 2 3 4 5
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Presenter Notes
Presentation Notes
Or the velocity decays to zero.


®
Recall: PHY 711 -- Assignment #22 Nov. 02, 2022

Determine the form of the velocity potential for an
incompressible fluid representing uniform velocity in the z
direction at large distances from a spherical obstruction
of radius a. Find the form of the velocity potential and the
velocity field for all r > a. Assume that for r = a, the
velocity in the radial direction is 0 but the velocity in the

azimuthal direction is not necessarily 0.
Wﬂ//_‘%\\_\_g_

VD = () TS

3 S

O(r,0)=-v,| r+—5 |cos§ ST

——— T

. s W Z =
In the present viscous case, we et e

will assume that v(a)=0.
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Presenter Notes
Presentation Notes
In previous discussions without viscosity, the velocity near the sphere is not necessarily zero.     How will this be affected in the presence of viscosity?


Newton-Euler equation for incompressible fluid,

modified by viscous contribution (Navier-Stokes equation):

\Y%
@Jr(V-V)V:f U L A 22
ot p P

app
Continuity equation: V-v=0

oV
Assume steady state: = = =0
[
Assume non-linear effects small
Initially set £, .., = 0;

= Vp=nV’v


Presenter Notes
Presentation Notes
Here we keep the dominant terms, finding a relationship between the pressure and the velocity.


Vp=nV’v
Take curl of both sides of equation:
Vx(Vp)=0=nV*(Vxv)

Assume (with a little insight from Landau):
V=V><(V><f(r)u)+u
where  f(r)————0

Note that:

Vx(VxA)=V(V-A)-V’A



Presenter Notes
Presentation Notes
This analysis follows the treatment of Landau and Lifshitz.


®
Digression

Some comment on assumption: v =V x (V X f(r)u) +u
Vx(VxA)=V(V-A)-V°A

Here A = f(r)u
Vxv=Vx(Vx(VxA))=-Vx(VA)

Alsonote: Vp=nV’v

=>VxVp=0=VxpV’v  or V*(Vxv) =0

Vi (VxV?A)=V*(VxA)=0


Presenter Notes
Presentation Notes
Deducing the form of the velocity


.
V=V><(V><f(r)u)_|_u

u=uz

Vx(Vx f(r)z)=V(V- f(r)z)-V’f(r)z

Vxv=0 :>V2(va):0

VIV f(nz)=0 =VHVf(r)xz)=0 =V*f(r)=0
f(’”)=C1r2+C2r+C3+Q

Vr:“COSQ( —EZ—szucosé?(l—4C1—2C2 +2€4j

3
r r

2
Vo Z—MSiné’(l—C;—f—lZ’ij:—usin9(1—4Cl G C4j


Presenter Notes
Presentation Notes
Here we find the most general form of the equation that satisfies the differential equation.


~ Some details:

> 2d)
V* =( =>| —+—— =0
f () (drz ra’r] 1 (r)
f(r)=C1r2+C2r+C3+Q
r

Vzu(Vx(fo(r)i)Jri)
=u(V(V (£(r)2))-V2/(r)z+ z)

Note that: Z = cos & — sin 60

V=u (V(Z—J;cos 9) — (V2 (f()- 1)(003 Or — sin 6’6))


Presenter Notes
Presentation Notes
Some details.


vr:ucose( —zﬂj:ucose(l—4Cl—2C2 +2€4j
r dr v 4
2
v, =—usin@ 1_%_l£ =—usin6’(1—4C1—C2—C;‘j
dr r dr roor
To satisty v(r > o) =u: =C, =0
To satisfy v(R)=0 solve for C,,C,
3
V. =ucoso 1—3R+ R3
2r  2r
3
v, =—usind 1—3R— R3
4r 4r


Presenter Notes
Presentation Notes
Assume that the velocity achieves steady flue far from the sphere and is zero on the sphere boundary.


3
V. =ucost 1—3—R+R—
2r 28’
3
v, =—using 1—3R—R3
4r 4r

Determining pressure:

Vp=nV’v = —nV(u cos&’( SR D

2r?

2r

— p(F) = py— nucos@(”ij


Presenter Notes
Presentation Notes
Finding all the constants and solving for the pressure .


p(r) =, - nucose( 3Rj
2r°

Corresponds to:
F,cos0 = (p(R) — Dy )47zR2 =—nucosf(6zR)
= F, =—nu (67Z'R)
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Presenter Notes
Presentation Notes
Deducing the drag force from the solution to the differential equation.


Additional effects of viscosity — allowing for changes in entropy

0 0
p(p,s)=p,+ = 5,04‘( pj s
op ). os ),



Newton-Euler equations for viscous fluids

Navier-Stokes equation

%+(v V)v= f—%Vp+ZV V+p(§+;7ij(V-v)

Continuity condition

op
V. ~0
= V- (pv)



Newton-Euler equations for viscous fluids — effects on sound

Without viscosity terms:
ov 1 op

5+(V-V)V=f—;Vp 5+V-(pv)=0
Assume: v=0+0vVv f=0 p=p,+0p
op
P=p,+0p=Dp, +[—j Gp = py+cop
op ).
2
Linearized equations: 9oV _ —C—Vﬁp 9%p +p,V-(6v)=0
ot £ Ot

Let Ov=0v, k) op = Op, ke



Sound waves without viscosity -- continued

o5v 05p

Linearized equations: — =——V —+p,V-(0ov)=0
q o T P PR AN CA)

Let Sv=Jv, Sp=dp, ¢

2 2
@ _ _C_Vé‘p — 505Vo = C 5,00 Kk

ot Po Po
%+pov-(5v):o = —wdp, + pk-0v,=0
:>/7c2:a)—22 % _K-ov,
c o c

=»Pure longitudinal harmonic wave solutions



Newton-Euler equations for viscous fluids — effects on sound
Recall full equations:
Navier-Stokes equation

g—:+(v V)v= f—%Vp+ZV V+p(§+;7ij(V-v)

Continuity condition

op
+V. =0
~ V- (pv)
Assume: v=0+0v f=0 p=p,+0p
p=p,+op= p0+cz5p+(apj oS
s ),

where ¢’ = (a_p) ‘ viscosity

op causes heat

transfer
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Newton-Euler equations for viscous fluids — effects on sound
Note that pressure now depends both on density and
entropy so that entropy must be coupled into the equations

6_VJF(V V)v= f—iVP+77VV+ (§+IUJV(V-V)
Yo,

ot p P 3
ap Os
+V-(pv)=0 T =k, VT
= V- (ov) pr—=k,
Assume: v=0+0Vv f=0 p=p,+p
pP=py,+op=p, +C’25,0+(apj Ss where ¢ = @
aS p 810 .
T=T,+6T=T,+| I 5p+(5_Tj S
5,0 ) 0s ),

§=S8,+O0s



Newton-Euler equations for viscous fluids —
linearized equations

a—V+(V V)v = f—le+77V V+— (§+IUJV(V-V)

ot p P P 3

:ﬁz—LV5p+ V25V+L(§+ ln)V(Vﬂv)
ot \,00 | P Po 3

2
! [Gpj v5p+(5pj Vost=—"Vép- pOEaTj Vs
Po |(\OP ), s ), Po ap ),

Digression -- from the first law of thermodynamics:

de=Tds+Ldp
o,

e8] - BRI A )




Newton-Euler equations for viscous fluids —
linearized equations

ap
V. =0
— tV-(pv)
00,
:>a—;0+p0 -(5V):O

oS
T—=kV°T
£ o1 th

005 _ Ky (8—Tj vass+| L | visp
ot p,,\\ Os op ).

Further relationships:

(8_Tj < Lo K = Ky
oS PC,
’ ‘ heat capacity at constant volume
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Newton-Euler equations for viscous fluids —
linearized equations

K c
= 005 _ YV O + [ oT V?0p | where y=-L
Ot T, \ op ). c,




Newton-Euler equations for viscous fluids — effects on sound
Linearized equations (with the help of various

thermodynamic relationships):

2

@ —C—V5p—p0(aTj V5s+lV 5V+—(§+177j (V'5V)
or  p, op ), P Po 3
00p
——+p,V-(ov)=0
Py Lo ( )

K
@:7K’V25s+cp or Viép
ot T, \ op ),

Here: 7/—6— K= a?




Linearized hydrodynamic equations

2
@:—C—V@o—po(aTJ V5s+lV §V+—(§+ 177) (V'5V)
ot p, op ), Py Po\~ 3
00p
—+p,V-(0oVv)=0
Py Lo ( )
K

@:7K’V25s+cp (aTj Viép
ot I, \ op ),

It can be shown that

2
(a_Tj _1c p where El(a—Vj (thermal expansion)
o), pe, yAor),

Let ov=0v, e ) sp=dp, & Ss=55, M



Linearized hydrodynamic equations; plane wave
solutions:

2 T 2 . 2 . 1
osv, = S Poy 1P 5o TIK 5y —L(g +—77jk(k-5vo)
Po ¢y Po Lo 3
wop, — p, k-ov,=0
. 2
055, = —iyck’Ss, — P sy
Lo

In the absense of thermal expansion, £ =0

c’op,

. 2 .
WOV, = k - ik ov, —L(§+lnjk(k-5vo)

Po Po Po 3
wop, —p, k-ov,=0

wSs, = —iykk’Ss,

=>»Entropy and mechanical modes are independent



Linearized hydrodynamic equations; full plane wave solutions:

2 T 2 . 2 . 1
osv, = S Poy 1P 5o TIK 5y —L(g +—77jk(k-5vo)
Po ¢y Po Lo 3
wop, — p, k-ov,=0
. 2
055, = —iyck’Ss, — P sy
Lo

Longitudinal solutions: (ov -k # 0):

2 2712
(a)z—czkz—kiaj (§n+§j]5p0—poz’f0k os, =0
0

P

ixfc’

Lo

k0, + (@ +iykk ) 5s, = 0



Linearized hydrodynamic equations; full plane wave solutions:

Longitudinal solutions: (ov-k # 0):

2 2712
[a)z—ck 2 4 1 K (3n+gjj5p0—p°ToﬁCk 5s, =0

Po ¢

p

. 2
KD oo, + (@+iyck?)Ss, =0

Po
Approximate solution: k=—+ixa
c
2 4 T 2 2
where o =~ a; (—77+§ +K°'Bw
2¢p, \ 3 2¢c

—ak- T, i (ﬁ-r—ct)

Op = 0p,e



Linearized hydrodynamic equations; full plane wave solutions:

WOV, =
pO Cp pO

wop, — p, k-ov,=0

. 2
055, = —iyck’Ss, — P sy
Lo

Transverse modes (ov-k =0):
op,=0 0s,=0

2 2
5'00k+T’BC 5Sk—mk ov, ——

A

§+77

j (k-6v,)
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