next up previous
Next: About this document ...

September 9, 1998
PHY 711 - Problem Set # 6
Consider an integral of the form:

\begin{displaymath}
E = \int \: d^3r \: F[\rho({\bf{r}}),g({\bf{r}})],
\end{displaymath}

where $\rho({\bf{r}})$ is a function of position in three dimensions, and $g({\bf{r}}) \equiv \vert{\bf{\nabla}} \rho({\bf{r}})\vert$. Show that the functional variation of E with respect to $\rho({\bf{r}})$ is given by:

\begin{displaymath}
\delta E = \int \: d^3r \: \left \{\frac{\partial F}{\partia...
 ...ho \cdot {\bf{\nabla}} g}{g}\right\}
{\delta \rho({\bf{r}})}.
\end{displaymath}



 

natalie holzwarth
9/9/1998