PHY 337- Problem Set \# 4

This problem is due Monday $9 / 6 / 99$ and will be worth 40 points.

Consider a curve such as the one shown above which passes through the points $(x, y)=(0,0)$ and $(x, y)=(D, 0)$.

1. Find the equation for the curve $y(x)$ which satisfies the two conditions:
(a) Maximizes the area:

$$
A=\int_{0}^{D} y d x
$$

(b) Constrains the length of the curve:

$$
L \equiv \int_{0}^{D} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=\frac{\pi D}{2}
$$

2. Carry out the integrals for A and L for your curve $\mathrm{y}(\mathrm{x})$.
