PHY 337- Problem Set \# 5

Start reading Chapter 7 of Marion.
Consider the Lagrangian representing a mass m moving vertically in a uniform gravitational field:

$$
L(y, \dot{y} ; t) \equiv \frac{1}{2} m \dot{y}^{2}-m g y
$$

such that $y(0)=h$ and $y(T)=0$, where the fixed time T is defined to be $T \equiv \sqrt{\frac{2 h}{g}}$.

1. Solve the Euler-Lagrange equations to find the particle trajectory $y(t)$ and evaluate the action integral for that trajectory.
2. Consider the following alternative trajectories and evaluate the action integrals for them:
(a) $y_{1}(t)=h(1-t / T)$
(b) $y_{2}(t)=h\left(1-(t / T)^{3}\right)$

Are your results consistent with Hamilton's principle?

