PHY 337- Problem Set \# 7

Continue reading Chapter 7 of Marion.
Consider the Lagrangian for the motion of a symmetric top under the acceleration of gravity:

$$
L(\theta, \phi, \psi, \dot{\theta}, \dot{\phi}, \dot{\psi})=\frac{1}{2} A\left(\dot{\phi}^{2} \sin ^{2}(\theta)+\dot{\theta}^{2}\right)+\frac{1}{2} B(\dot{\phi} \cos (\theta)+\dot{\psi})^{2}-M g h \cos (\theta)
$$

where A, B, M, g, and h are parameters related to the moments of inertia, the mass, the acceleration of gravity, and the location of the center of mass. The angles θ, ϕ, and ψ are called the "Euler angles" and are the generalized coordinates for this system. Find the equations of motion and identify the constants of the motion.

