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In this brief report, we analyze methods for evaluating the singular integrals of the Fock exchange interaction
with the help of a simple analytic model. We find that Brillouin zone sampling can be important even for systems
with large unit cells.

I. INTRODUCTION

Recently, there has been a lot of interest in using “exact”
Fock exchange in first-principles calculations in order to avoid
electron self-interaction.1–10 In terms of Bloch states Ψnk(r)
of band index n and wavevector k, the Fock exchange energy
can be written in the form11

Ex =− e2

4

∑
nkn′k′

fnkfn′k′

×
∫
d3r d3r′

ρnk,n′k′(r)ρ∗nk,n′k′(r′)

|r− r′|

= −e
2π

V
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fnkfn′k′
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|ρnk,n′k′(G)|2
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(1)

Here, the pair density function is defined to be

ρnk,n′k′(r) ≡ Ψnk(r)Ψ∗n′k′(r). (2)

The Fourier transform of the pair density takes the form

ρnk,n′k′(G) ≡
∫
V
d3r

(
ρnk,n′k′(r)e−i(k−k

′)·r
)

e−iG·r.

(3)
In these expressions, G denotes a reciprocal lattice vector, fnk
denotes a Brillouin zone weight and occupancy factor, and V
denotes the volume of the unit cell.12 In addition to evaluating
the energy, it is also necessary to evaluate the exchange kernel
which takes the form

Xnk(r) = −1

2

∑
n′k′

fn′k′Wnk,n′k′(r)Ψn′k′(r), (4)

where the interaction function is defined by

Wnk,n′k′(r) ≡ e2

∫
d3r′

ρnk,n′k′(r′)

|r− r′|
= ei(k−k

′)·r
∑
G

Wnk,n′k′(G)eiG·r.
(5)

The Fourier transform of the interaction kernel given by

Wnk,n′k′(G) =
4πe2

V
ρnk,n′k′(G)

|k− k′ + G|2
. (6)

The numerical challenge of evaluating Ex and Xnk(r) comes
in evaluating the singular Brillouin zone integrals in Eqs. (1)
and (4) for |k− k′ + G| → 0.

II. NUMERICAL TECHNIQUES

A. Singular integration algorithm

A convenient method for numerical evaluation of singu-
lar integrals is to introduce an auxiliary function in order to
transform the argument of the numerical integral into a non-
singular argument. The complete result involves also eval-
uating the singular integral of the auxiliary function which
can be accomplished by using analytic or efficient numer-
ical methods. This idea was first proposed by Gygi and
Baldereschi13 and further developed by Massidda, Posternak,
and Baldereschi;14 several other schemes have appeared in the
more recent literature.3,4,7 Following the work of Duchemin
and Gygi7, Eq. (1) can be evaluated according to

ED−G
x = −e

2π

V
∑
nk

fnk
(
T 1
nk + T 2

nk

)
, (7)

where the “principal part”-like discrete summation is defined
as

T 1
nk ≡

∑
n′k′

fn′k′

′∑
G

|ρnk,n′k′(G)|2 − δnn′e−α|k−k
′+G|2

|k− k′ + G|2
(8)

and the continuous integral over the auxiliary function is given
by

T 2
nk ≡

∑
n′k′

fn′k′δnn′

∑
G

e−α|k−k
′+G|2

|k− k′ + G|2
=

V
2π
√
πα

. (9)

The choice of e−αq
2

for the auxiliary function is convenient
for analytic reasons and it approximates the pair density due to
a Bloch band formed from non-overlapping Gaussian orbitals
as we will see below.

In order to evaluate the exchange kernel in Eq. (4), we can
use a similar approach by evaluating the form

XD−G
nk (r) = −2πe2

V
(
X 1
nk(r) + X 2

nk(r)
)
. (10)

Here the “principal part”-like discrete summation is per-
formed for the term15

X 1
nk(r) =

∑
n′k′

fn′k′

′∑
G

(((
ei(k−k

′)·rΨn′k′(r)ρnk,n′k′(G)

|k− k′ + G|2

− δnn′
Ψnk(r)e−α|k−k

′+G|2

|k− k′ + G|2

)))
eiG·r.

(11)
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The singularity is treated in the term

X 2
nk(r) = Ψnk(r)

∑
G

Gα(G)eiG·r. (12)

where the constant function Gα(G) is defined by the Brillouin
zone integral

Gα(G) ≡
∑
k′

fnk′
e−α|k

′+G|2

|k′ + G|2
. (13)

This function can be evaluated numerically with high accu-
racy with the help of integration by parts. Specifically, for
the case that each band n is doubly occupied, the summation
can be expressed as a volume integral over the Brillouin zone∑

k′ fnk′ → 2V
(2π)3 which can be transformed into a smooth

volume integral and a non-singular surface integral with the
form:

Gα(G) =
2V

(2π)3

(((∫
BZ (vol)

d3k′ 2α e−α|k
′+G|2

+

∮
BZ (surf)

dSk′ · (k′ + G)
e−α|k

′+G|2

|k′ + G|2

)))
.

(14)

This evaluation, while not trivial,16 is not expected to be the
bottleneck of the evaluation of the exchange kernel, particu-
larly since it remains the same throughout the self-consistency
iterations of the wavefunctions.

B. Truncated Coulomb kernel algorithm

Spencer and Alavi4 developed an alternate scheme to eval-
uate the singularity of the Fock kernel based on adjusting the
real-space range of the Coulomb kernel consistent with the k-
space integration mesh. In this scheme, the expression for the
exchange energy per unit cell takes the form:

ES−A
x = −e

2π

V
∑
nkn′k′

fnkfn′k′

∑
G

|ρnk,n′k′(G)|2

|k− k′ + G|2

× (1− cos(|k− k′ + G|Rc)) .
(15)

Here the cut-off radius Rc is chosen such that 4π
3 R

3
c = NkV ,

where Nk denotes the number of k-points used in the Bril-
louin zone integration. The corresponding evaluation of the
exchange kernel in this formulation would take the form

XS−A
nk (r) = −1

2

∑
n′k′

fn′k′W S−A
nk,n′k′(r)Ψn′k′(r), (16)

where

W S−A
nk,n′k′(r) ≡ ei(k−k

′)·r

×
∑
G

Wnk,n′k′(G)
[[[
1− cos(|k− k′ + G|Rc)

]]]
eiG·r.

(17)

III. NUMERICAL EXAMPLE

By analyzing these algorithms for a simple analytic model,
we can assess some of the properties of the algorithms in de-
tail. This, together with tests on “real” materials that have
appeared in the literature,2–5,7–9 will help refine the computa-
tional approaches.

A. Simple analytic model

We imagine a system with a single site per unit cell and
with a single band, filled with one electron of each spin, and
described by localized spherically symmetric Gaussian orbital
of the form

φn(r) ≡ 1

(πa2)
3/4

e−
1
2 (r/a)2 . (18)

Here a denotes a length parameter which we will assume is
substantially smaller than any of the lattice constants of the
crystal. A Bloch-wave of wavevector k can be constructed
from linear combinations of the localized orbital:

Ψnk(r) =
∑
T

eik·Tφn(|r−T|), (19)

where T denotes a lattice translation. For this model, assum-
ing that the orbitals are non-overlapping, the pair density func-
tion is given by in real space by

ρnk,nk′(r) ≈
∑
T

ei(k−k
′)·T |φn(|r−T|)|2 . (20)

The Fourier transform of the pair density is given by

ρnk,nk′(G) ≈ e−|k−k
′+G|2a2/4. (21)

For this model, the exchange energy per unit cell has the ana-
lytic result

Ex = −e
2

a

√
2

π
, (22)

and the exchange kernel can be expressed in terms of error
functions:

Xnk(r) = −e2
∑
T

eik·Tφn(|r−T|)
erf( |r−T|a )

|r−T|
. (23)

From this very simple analytic model, we are now in a posi-
tion to evaluate the numerical properties of several evaluation
algorithms discussed in the literature.

B. Numerical results for the model system

In order to perform the numerical study, we chose a =
1 bohr and constructed simple cubic lattices with cube lengths
L = 8 bohr to ensure that the overlap error is no more than
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FIG. 1. (Color online.) Magnitude of the exchange energy differ-
ences relative to exact result (22), calculated using the Duchemin-
Gygi (“D-G”) and Spencer-Alavi (“S-A”) schemes. The horizontal
axis represents the k-point sampling in terms of the partitioning num-
bers N1N2N3. Note that results for the “D-G (corr)” scheme do not
show up on the plot.

10−7. The Brillouin zone was sampled by partitioning the
primitive reciprocal cell into N1, N2, and N3 segments, with
Nk ≡ N1N2N3, so that the weight factors take the values
fnk = 2

Nk
. The sampling k-points are chosen to have the

values

ki = f i1G1 + f i2G2 + f i3G3, (24)

where G1,G2,G3 denote the primitive reciprocal lattice vec-
tors and the the fractional components are given by

f i1 = −1

2
+
xi − 1

2

N1
where 1 ≤ xi ≤ N1. (25)

Figure 1 illustrates the errors in the exchange energy Ex
for the various algorithms. Results for the Duchemin-Gygi
method do depend on the choice of α, but for α 6= a2/2,
the trends are very similar; α = 0.1 bohr2 is used here. The
label D-G (uncorr) refers to the auxiliary function method de-
scribed in Sec. II A where the singular point is omitted from
the sum. These results converge relatively slowly with k-point
sampling, and can be shown to be dominated “curvature” error
∝ α−a2/2

Nk
. In order to improve this convergence, Duchemin

and Gygi7 suggested a better treatment of the integrand of Eq.
(8) in the neighborhood of the singularity, which for the model
system evaluates to

lim
|k−k′+G|→0

[[[ |ρnk,n′k′(G)|2 − δnn′e−α|k−k
′+G|2

|k− k′ + G|2

]]]
= α−a

2

2
,

(26)
which is labeled D-G (corr) in Fig. 1, but is in fact too close
to the exact result to show up on the plot.

The numerical results of Fig. 1 show that the Spencer-
Alavi scheme (Sec. II B) converges faster than the uncorrected
Duchemin-Gygi method. Because we have an analytic form
for the pair density function, we can evaluate the integral (15)
without considering the sampling error of the numerical inte-
gration.

ES−A
x = −e

2

a

√
2

π

(
1− e−R

2
c/(2a

2)
)
. (27)
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FIG. 2. (Color online.) Plot of the exact exchange kernel function
Xnk(r) for k = 0 plotted along a cube edge, compared with the nu-
merical differences obtained using single k-point sampling with the
approximations of Spencer and Alavi (∆X ≡ XS−A

nk − Xnk) and
Duchemin and Gygi (∆X ≡ XD−G

nk −Xnk). To help the visualiza-
tion, the exchange kernel differences (“∆X”) have been multiplied
by 100.

This shows that for any choice of Nk for the k-point integra-
tion mesh and its corresponding cut-off radius Rc, there is an
error factor of e−R

2
c/(2a

2). Fortunately, this term is typically
very small and decreases further with increasing Nk, as illus-
trated in Fig. 1 with the label “S-A (analytic)”.

We have also investigated the calculation of the exchange
kernel function Xnk(r) as shown in Fig. (2) using the var-
ious algorithms and the case of a single k-point sampling.
Here we see that the errors of all of the methods are in the
1% range. The spatial distribution of the errors is differ-
ent for Duchemin-Gygi and Spencer-Alavi algorithms. For
the Duchemin-Gygi case, the curvature correction to the in-
tegrand (10) in the limit |k − k′ + G| → 0 changes the
shape of the error, but does not drastically reduce its mag-
nitude as it did for the calculation of the energy. We have
checked the algorithm for larger k-point samplings and find
the results to converge to the exact Xnk(r) at a rate similar to
that of the convergence of Ex in the uncorrected Duchemin-
Gygi method. For the Spencer-Alavi method, the single k-
point sampling gives a small oscillatory error. For the simple
model, the Spencer-Alavi modified exchange kernel (16) can
be evaluated analytically apart from the k-point sampling er-
ror with the result

XS−A
nk (r) = −e2

∑
T

eik·Tφn(|r−T|)

×
[[[

erf( |r−T|a )

|r−T|
−

erf(Rc+|r−T|
a )− erf(Rc−|r−T|

a )

2|r−T|

]]]
.

(28)

The difference of this result from the exact kernel (23) for the
case illustrated in Fig. (2) is essentially zero for all arguments
on the scale of the plot.
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C. Gamma point approximations

In modeling systems with large supercells or modeling
molecules or clusters using periodic boundary conditions, it
is convenient to limit the Brillouin zone sampling to a single
k-point, typically the Γ point.5,9 The present model falls into
the same category as these systems, since we have assumed
non-overlapping orbitals. Even for our case where the overlap
is less than 10−7, we see that Γ-point sampling can introduce
an error due to unphysical interactions between unit cells. To
analyze the origin of the unphysical interaction, we can write
the exchange energy (1) in terms of sums of real-space inte-
grals

Ex = −e2
∑
kk′

∑
T

ei(k−k
′)·TTT, (29)

where, for the Gaussian model, the interaction term is

TT ≡
∫
d3r

erf(r/a)

r
e−|r−T|

2/a2 . (30)

Comparing this expression with the analytic results given
in Eq. (22), it is apparent that only the on-site term TT=0

contributes to the physical result. However, using the Γ point
sampling to approximate the Brillouin zone sampling over k
and k′, the exchange energy expression becomes

EΓ
x = −e2

∑
T

TT, (31)

showing that the unphysical interaction terms contribute to the
numerical result. This analysis is consistent with the larger
errors for the “111” k-point sampling results shown in Fig. 1
and, by extension, for the 1% errors shown in Fig. 2. For-

tunately, the unphysical TT 6=0 contributions decrease with in-
creasing simulation cell size. In the exact expression, the Bril-
louin zone integration provides suppression of contributions
from different cells due the interference integral:∑

k

eik·T = δT0. (32)

While Γ-point sampling contributes no interference, finite
Brillouin zone sampling contributes some interference effects
and thus improves the numerical result. An attractive alterna-
tive method of avoiding unphysical exchange interactions be-
tween localized states might be to use a Wannier function rep-
resentation as has been suggested by Wu, Selloni, and Car.6

IV. SUMMARY AND CONCLUSIONS

The simple model presented in this work exercises some
of the challenges of evaluating Fock exchange and provides
an interesting test system which has helped us evaluate algo-
rithms and implementations. In particular, we have been able
to show that in the plane-wave basis, k-point sampling can
be important even for systems with large unit cells. Both the
Duchemin-Gygi7 and Spencer-Alavi4 algorithms are shown to
work well for the test system.
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