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a b s t r a c t

In the Projector Augmented Wave (PAW) method developed by Blöchl (1994), a PAW data file is needed
for each element, taking the role of the pseudopotential file used with the norm-conserving or ultrasoft
formalisms. In this paper, we review methods for generating PAW data files and for evaluating their
accuracy, transferability, and numerical efficiency in simulations of bulk solids.We have developed a new
set of PAW atomic data files for most of the stable elements in the periodic table. These files are provided
in a standard XML format for use in any PAW electronic structure code. The new dataset performs well as
measured by the ‘‘∆’’ evaluation criterion introduced by Lejaeghere et al. (2014), and also performs well
in a modified evaluation scheme proposed in the present paper.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the context of Density Functional Theory (DFT) electronic
structure calculations performed in the framework of the plane
wave pseudopotential approach, the interaction between valence
electrons and the ions formed by the atomic nucleus and the core
electrons can be represented by an effective interaction known as
a pseudopotential. The pseudopotential must be constructed for
each element to represent the valence electron interactions in sim-
ulations of a wide variety of materials. During the past 30 years,
much effort has been devoted to improving the accuracy, trans-
ferability, and efficiency of pseudopotential formulations. In 1979,
Hamann, Schlüter, and Chiang [1] introduced the notion of norm-
conserving (NC) pseudopotentials. A large number of numerical
schemes have been proposed to construct NC pseudopotentials
such as described in Refs. [2–4]. In this context, the pseudopoten-
tial files contain pseudo wavefunctions and corresponding pseu-
dopotentials for each relevant quantum number ‘‘l’’.

In order to decrease the number of plane waves required
for the numerical convergence of DFT calculations in the NC
pseudopotential framework, Vanderbilt introduced the concept of
an ultrasoft (US) pseudopotential, for which the norm-conserving
condition has been relaxed [5]. In addition, Blöchl [6] proposed
a new formalism called the projector augmented wave (PAW)
methodwhich shares someof the planewave convergence benefits
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of the US scheme. Both the US and PAW formalisms use the
notion of atomic projector functions that must be given in the
pseudopotential file. The PAW method is based on a linear
transformation between the all-electron (AE) and corresponding
pseudo (PS)wavefunctions of an electronic state, togetherwith the
use of atom-centered AE and PS partial waves and their associated
projectors. This PAW transformation ensures that the formalism
is directly derived from the all-electron equations with well-
controlled approximations. It can be shown that the US and NC
formalisms can be derived from the PAW formalism [7] with the
use of additional approximations.

The PAW formalism as developed by Blöchl [6] needs a ‘‘PAW
atomic data’’ file for each element considered in the simulation.
This data file includes both AE and PS partial wave basis functions
and their corresponding projector functions together with addi-
tional information such as the local pseudopotential and the com-
pensation charge parameters. Within the PAW formalism, there
are a number of alternative implementations. For example, the
construction of the PS basis andprojector functions can be based on
the method proposed in the original paper by Blöchl’s [6], or based
on the compatible scheme developed by Vanderbilt in the formu-
lation of the US method [8] (called here Vanderbilt’s scheme), or
based on the RRKJ pseudization scheme [9] originally developed
for NC pseudopotentials [10]. The PAW method has been imple-
mented in several codes (see for instance [6,11,7,12–15]).

Within these PAWcodes, there are additional variations in some
of the details of the implementations. For example, in the Vienna
ab initio simulation package (VASP) [12] the PAW treatment is
based on the Kresse–Joubert formulation [7] which differs from
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the original Blöchl formulation [6] in the treatment of the ex-
change–correlation contributions [16].

In addition to the large diversity of numerical formulations of
the PAW method, it is sometimes necessary to adjust the method
on the basis of the physical properties of the simulation system.
For example, in the treatment of materials at high pressure, it can
be necessary to include both semi-core and valence electron states
in the PAW basis and projector set and to use small augmentation
radii. In general, it is sometimes necessary to develop specialized
PAW atomic data. With all of these competing considerations, it is
clear that it is not possible to find a standardized PAW atomic data
set that can meet all of the requirements of materials simulations.
However, since reliable PAW atomic data are essential for realistic
materials simulations, it is important to invest effort in their
development and evaluation.

In this paper we review many different schemes for generating
PAW atomic data and introduce a new PAW atomic dataset for
71 elements. We also discuss various evaluation criteria for the
datasets in terms of accuracy, transferability, and computational
efficiency. The paper is organized as follows. Section 2 presents
the general background and formalism and summarizes several
different schemes for generating the components of the PAW
atomic data. Section 3 gives the methodology we have followed
to generate a new PAW atomic dataset for 71 elements. Section 4
discusses validation and efficiency criteria for the atomic data.
For validation, we use the ∆ measure introduced by Lejaeghere
et al. [17] and also introduce a modified criterion. These criteria
are used to compare our new PAW atomic dataset with two other
packages from the recent literature [18,19].

2. General background and formalism

The details of the PAWmethod have already been given several
times in the literature [6,20,7].

In this paper, we use atomic units and adopt the notation of
Ref. [7] and also use the specific formalism used in the ABINIT
code [14] as described in Ref. [21].

The PAW method is based on a linear transformation linking
the AE (all electron) wavefunctions Ψnk to the corresponding PS
(pseudo) wavefunctions Ψ̃nk. Here, the indices n and k refer to the
band and wavevector indices, respectively.

|Ψnk⟩ = |Ψ̃nk⟩ +


i

(|φi⟩ − |φ̃i⟩) < p̃i|Ψ̃nk⟩. (1)

The summation index i represents each atom species, each site
position R⃗, and each of the partial wave components including all
of their angular momentum quantum numbers (l,m). The AE φi

and PS φ̃i partial waves are atomic functions which are designed to
be equal outside the augmentation region, defined to be a sphere
of radius rc . Therefore, as in the NC (norm-conserving) scheme,
Ψn = Ψ̃n outside a core radius (rc). The projector functions p̃i are
dual to the PS partial waves:

⟨p̃i | φ̃j⟩ = δij, (2)

and are constructed to be confined within the augmentation
region.

The PS wavefunctions Ψ̃nk are solutions of a generalized
eigenvalue equation:

H̃Ψ̃nk = ϵnkOΨ̃nk (3)

with

O = 1 +


ij

|p̃i⟩(⟨φi | φj⟩) − (⟨φ̃i | φ̃j⟩)⟨p̃j| (4)
and

H̃ = −
1
2
∆ + ṽeff +


ij

|p̃i⟩Dij⟨p̃j|. (5)

Here ṽeff = vH [ñZc] + vH [ñ + n̂] + vxc[ñ + ñc] is an effective
local potential and Dij is a non-local term. vH is the Hartree
potential and vxc the exchange–correlation potential. In the above
equations, the quantities φi, φ̃i, p̃i, n̂, ñc, vH [ñZc] are derived from
atomic quantities that must be provided in the PAW atomic data
file for each element. ñc is the pseudization of core electron charge
density nc . The contribution vH [ñZc] represents the pseudization of
Coulombic contributions from the nuclear charge Z and the core
density.

2.1. All electron atomic calculations

As in other approaches, the first step in generating the PAW
atomic data is to perform an AE calculation for a given atomic
configuration. All wavefunctions (and projectors) are written as a
product of radial and spherical harmonic functions:

φi(r⃗) =
φni li(r)

r
Slimi(r̂) (6)

with Slm(r̂) representing a real spherical harmonic function and
with ni indexing different partial waves for angular momentum li.
It is assumed that the total electron density can be partitioned into
a core electron density nc(r) corresponding to Qcore electrons and
a valence electron density n(r). The core density is assumed to be
‘‘frozen’’ in the same form in the solid as it is in the atom. The radial
atomic eigenfunctions φni li are solution of:

[T + VAE(r)]φni li(r) = ϵni liφni li(r) (7)

where T is the kinetic energy operator and VAE(r) is the self-
consistent AE potential.

The AE partial wave basis functions φni li are solutions of the
non-relativistic Schrödinger equation (Eq. (7)) or, for heavier
elements, of the scalar-relativistic equation developed by Koelling
and Harmon [22]. The transformation (1) implicitly supposes that
the partial wave basis is complete. In practice, completeness is
approximated by the choice of a finite number of partial wave
basis functions, compromising accuracy and efficiency. Most of the
time, a reasonable choice is to take two partial waves per angular
momentum to perform simulations of materials in their ground
state. To construct the AE basis set, the basis set energies ϵni li
are first selected. The AE partial waves φni li are the corresponding
solutions of Eq. (7). Often at least one of the AE partial waves
φni li(r) is a bound state of the atom. In order to approximate the
completeness criteria, unbound solutions of Eq. (7) are also used.
The corresponding unbound partial wave functionsφni li(r) need be
evaluated only within the augmentation sphere.

2.2. Potential pseudization

The next step is to build a pseudopotential function VPS(r) that
will be used to generate the PS partial waves φ̃ni li(r). In addition,
the unscreened pseudopotential will be used to generate a local
pseudopotential. In order to fulfill the requirements of the PAW
formalism, VPS(r) is designed to smoothly match VAE(r) at a cutoff
radius rloc .

Several ways have been proposed in the literature to obtain
VPS [6,11,7]. The first possibility is to use the Troullier–Martins
scheme originally formulated for norm-conserving pseudopoten-
tials. [3]. We first choose a reference energy Eloc and a reference
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angular momentum lloc . A PS wavefunction is chosen to have the
form

φPS(r) =


r lloc+1 exp(p(r)) for r ≤ rloc
φAE(r) for r > rloc,

(8)

where p(r) is an even 12th order polynomial. By design, φPS
smoothly matches the corresponding AE wavefunction φAE at
r = rloc . The polynomial coefficients are determined from these
matching conditions and other constraints including the norm-
conservation condition

 rloc
0 |φPS(r)|2r2dr =

 rloc
0 |φAE(r)|2r2dr

[23]. From this choice of PS wavefunction, VPS(r) is determined by
inverting the wave equation, which can be explicitly expressed in
the form:

VPS(r)

=

Eloc +
1
2


d2p
dr2

+


dp
dr

2

+
2(lloc + 1)

r
dp
dr


for r ≤ rloc

VAE(r) for r > rloc .
(9)

A second possibility is to use an ultrasoft scheme without the
norm conservation constraint. A PSwavefunction is chosen to have
the form

φPS(r) =

r lloc+1
3

m=0

Cmr2m for r ≤ rloc

φAE(r) for r > rloc .
(10)

As in the Troullier–Martins scheme, the polynomial coefficients Cm
in the ultrasoft scheme are chosen so that φPS(r) is continuous and
smooth particularly near r = rloc . The corresponding pseudopo-
tential VPS(r) is determined by inverting the wave equation for
this choice of PS wavefunction; the resulting equation is similar to
Eq. (9).

A third possible scheme [7] is to simply derive VPS from VAE by
using a zero-order spherical Bessel function:

VPS(r) =


α
sin(qr)

r
for r ≤ rloc

VAE(r) for r > rloc,
(11)

where the parameters α and q are chosen to ensure continuity of
VPS(r).

For s or p elements, the Troullier–Martins norm-conserving
scheme with lloc = lmax + 1 (with lmax denoting the largest value
of the angular momentum quantum number in the valence states)
is often a good choice as it has good scattering properties. For d or
f elements, this may lead to ‘‘ghost states’’ (unphysical states due
to a numerical artifact, see [24]) and the second and third choices
for VPS(r) may be preferable.

2.3. Wavefunction pseudization

2.3.1. The Vanderbilt scheme
In the formulation of US pseudopotentials [5,8], a scheme for

generating PS partial waves and projectors was developed that
can also be used for the PAW method. For each AE radial basis
function φni li(r) a corresponding PS radial basis function φ̃ni li(r) is
generated, designed to match smoothly at chosen radius rni li . This
pseudization can be performed in several ways. The form of the
pseudized function can be either a polynomial:

φ̃ni li(r) = r li+1
p

m=0

Cmr2m (12)

or, following aRRKJ scheme [9], a sumof spherical Bessel functions:

φ̃ni li(r) =

p
m=1

αmrjli(qmr). (13)
A slightly modified RRKJ scheme (modRRKJ) was recently intro-
duced into the ATOMPAW code [25], designed to ensure that the
corresponding projector functions have continuous first deriva-
tives and to control the desired number of nodes in the pseudo ba-
sis functions [26]. The modRRKJ scheme needs further testing and
has not been used in the current study.

For each smooth basis function, a localized auxiliary function
can be formed:

|χni li⟩ = (ϵni li − T − VPS)|φ̃ni li⟩ (14)

which by design vanishes for r > rc = sup(rni li , rloc). The projector
functions are then formed from a linear combination of these
auxiliary functions of the same angular momentum:

p̃nj lj(r) =


i

χni li(B
−1)i,j δli lj (15)

where the elements of the matrix B are given by:

Bi,j = ⟨φ̃ni li | χnj lj⟩. (16)

As shown by Vanderbilt [5], this construction ensures that

⟨φ̃ni li | p̃nj lj⟩ = δij (17)

and that the smooth function φ̃ni li(r) is an eigenfunction of the
atomic PAW Hamiltonian.

2.3.2. The Blöchl scheme
In Blöchl’s pseudofunction construction scheme [6], the projec-

tor functions are built with the help of a shape function k(r) that
vanishes outside the augmentation region. It can be for example:

k(r) =



sin(πr/rc)
(πr/rc)

2

for r < rc

0 for r ≥ rc .
(18)

The pseudo basis functions φ̃ni li(r) are found by solving a self-
consistent Schrödinger-like equation:

(T + VPS − ϵni li)|φ̃ni li⟩ = Cni lik(r)|φ̃ni li⟩ (19)

with the constants Cni li adjusted so that the logarithmic derivatives
of φni li(rc) and φ̃ni li(rc) are equal. The corresponding projector
functions are then formed according to:

p̃ni li(r) =
k(r)φ̃ni li(r)

⟨φ̃ni li | k | φ̃ni lj⟩
(20)

so that ⟨p̃ni li | φ̃ni li⟩ = 1. The final basis and projector functions
φni li , ˜φni li and ˜pni lj are then obtained from the previous ones by a
Gram–Schmidt orthogonalization procedure.

2.4. Core densities and unscreened potential

The last quantities that must be provided in the PAW atomic
data file are nc , ñc and vH [ñZc]. nc is directly obtained from the
AE calculation. It is then pseudized using a polynomial form
inside a cut-off radius to obtain ñc . The case of vH [ñZc] is more
delicate. It is obtained by unscreening VPS in such a way that
the pseudopotential contributions from the atomic generation are
consistent with the corresponding contributions in the treatment
of solid materials. Two schemes are reported in the literature; the
first scheme was developed by Blöchl [6] and a second scheme
was developed by Kresse and Joubert [7]. Both schemes involve
the use of a compensation charge density that is added to the
pseudo charge density to ensure that each atom in both the atomic
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calculation and within the periodic solid is represented with the
correct multipole moments.

Besides requiring that the compensation charge be confined
within the augmentation sphere, there are no restrictions on its
shape. Several shapes for the radial component of compensation
charge density gL(r) are in common use and are listed below. For
the atomic system only the monopole (L = 0) moment is needed,
but higher moments are needed in the solid state calculations. One
choice is given by

gL(r) = NrLk(r), (21)

where k(r) is the squared sinc function defined in Eq. (18). Another
choice is a Gaussian shape function:

gL(r) = NrLk(r) with k(r) = exp(−(r/d)2). (22)

Still another choice is a spherical Bessel function shape functions:

gL(r) =


2

i=1

αijL(qir) for r < rc

0 for r ≥ rc .
(23)

In this case, the coefficients αi and qi are chosen so that the
expression goes smoothly to 0 as r approaches rc . In all of the
cases, the shape functions are normalized so that when they are
multiplied by the appropriate angular function, they integrate to
unit multipole moment within the augmentation sphere. For L =

0, the integrated shape function satisfies


∞

0 g0(r)d3r = 1.
Blöchl’s scheme [6] for pseudopotential generation makes

use of a local pseudopotential function v̄(r) which is spacially
localized within the augmentation radius and which is generated
by descreening VPS(r) with corresponding atomic valence Hartree
and exchange–correlation functions:

v̄ = VPS − vH [ñ + ñc + n̂B] − vxc[ñ + ñc]. (24)

Here n̂B is a compensation charge that is added to the pseudo
charge density ñ to reproduce the correct multipole moments of
the AE charge density including both core electron and nuclear
charge contributions. Defining the Blöchl compensation charge
in terms of one of the shape functions (Eqs. (21)–(23)) for the
spherically symmetric (L = 0) function appropriate for the atomic
case, it takes the form

n̂B(r)

= g0(r)
 rc

0
[n(r ′) − ñ(r ′) + nc(r ′) − ñc(r ′) + nZ (r ′)]d3r ′ (25)

where nZ ≡ Zδ(r′) represents the nuclear charge density. This
analysis ensures that v̄ is a potential localized in the PAW sphere.

A second scheme is due to Kresse and Joubert [7] who define:

vH [ñZc] = VPS − vH [ñ + n̂K ] − vxc[ñ + n̂K + ñc] (26)

where the Kresse–Joubert compensation charge density function
n̂K depends only on the AE and PS valence electron density which
expressed in terms of an L = 0 shape function takes the form.

n̂K (r) = g0(r)
 rc

0
[n(r ′) − ñ(r ′)]dr ′. (27)

The relationship between the two formulations can be written:

vH [ñZc] = v̄ + vH [ñc + g0(Qcore − Q̃core − Z)]

− vxc[ñ + n̂K + ñc] + vxc[ñ + ñc], (28)

where Qcore ≡
 rc
0 nc(r)d3r and Q̃core ≡

 rc
0 ñc(r)d3r . The main

difference between the two treatments is the arrangement of the
Coulombic contributions. While in the Blöchl formulation, v̄ is
a localized pseudopotential, in the Kresse–Joubert formulation,
there is a long range Coulombic tail of the form vH [ñZc] → −(Z −

Qcore)/r . Another contribution to the difference (Eq. (28)) is in
the treatment of the exchange–correlation functions. There is no
reason to include n̂K in the exchange–correlation term except for
the convenience of storing the summed density function ñ + n̂
rather than the quantities ñ and n̂ separately. In practice, the
Kresse–Joubert formulation may lead to numerical error under
certain conditions. For example, it has been shown that in the
GGA approximation, when the shape of the compensation charge
function is given by Eq. (21), the equilibrium lattice constant and
the bulkmodulus of Cu in the fcc structure are equal respectively to
0.367 nm and 120 GPa in the Blöchl formulation, whereas they are
equal respectively to 0.374 nm and 110 GPa in the Kresse–Joubert
formulation [16].

3. PAW atomic data generation

For each element, PAWatomic data generation follows the same
steps as used to generate norm-conserving or US pseudopotentials.
The first step is to choose the exchange–correlation functional
(LDA-PW or GGA-PBE for instance) and to select the form of the
wave equation (non-relativistic or scalar-relativistic).

3.1. Electronic configuration

The next step is the selection of the electronic configuration
and the partitioning of the states into core and valence electron
designations. The AE wavefunctions corresponding to valence
states will be used in the construction of the partial wave
basis, while the core states will be treated in the frozen core
approximation. As a first approximation the valence states will
be chosen from the outer shells of the configuration. However,
in some cases it is necessary to include semi-core states in the
set of valence electrons in order to simulate materials under
special physical conditions, or to accurately represent transition
metal or rare-earth materials. There are also some cases where
physical conditions do not indicate a need for semi-core states, but
the use of semi-core states provide mathematical stabilization by
preventing the appearance of ‘‘ghost states’’ in the calculations [24,
23]. Rather than using the standard ground state configuration, it
is sometimes useful to use an excited electronic configuration to
generate a PAW dataset for the study of materials with significant
charge transfer (such as oxides). However, in our experience,
the results are not highly dependent on the chosen electronic
configuration.

3.2. Choice of the grid and pseudization radii

It is recommended that a logarithmic grid is used for the AE
atomic calculations in order that the differential equations can
be accurately solved and the AE wavefunctions can be accurately
represented in the region close to the nucleus. Indeed, it is very
important, for instance, that the integral of the core electron
density is consistent with the number of core electrons to high
accuracy.

Pseudization cutoff radii for each valence orbital φ̃ni li , for the
screened pseudopotential VPS , for core pseudodensity ñc , and for
shape function g0 are then chosen. The matching and cutoff radii
must be chosen so that augmentation spheres do not overlap in the
solid calculations. It is well-known that the choice of radii is crucial
for the efficiency of the PAW atomic data. A compromise must be
found between the use of small radii, which will generally result
in better numerical accuracy but needs a large plane wave energy
cutoff, and the use of larger radii, which may produce results with
worse numerical accuracy but convergeswith a smaller planewave
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energy cutoff. Another tool to reduce the energy cutoff is to use
Fourier filtering, as proposed for instance in [27], but we have not
used it in this study.

3.3. Generation of the partial wave basis

The partial wave basis is composed of the valence electron
states and, if necessary for accuracy, supplementary partial waves
φni li with the choice of corresponding reference energies ϵni li .
We have generally chosen to have 2 partial-waves per angular
momentum in the basis. (This choice is not necessarily optimal,
but adequate in most cases.) When we need to calculate a
great number of bands above the Fermi level (DFT conductivity
calculations for instance) itmay be necessary to add a third partial-
wave per angular momentum with a higher (positive) energy
reference to improve the completeness of the partial wave basis
and to better representwavefunctions states above the Fermi level.

The pseudization scheme for wavefunctions is then chosen
(Blöchl, Vanderbilt polynomial or RRKJ). We have noticed that
Blöchl scheme for generating projectors and pseudo basis func-
tions can produce very accurate datasets but sometimes the re-
sulting calculations on periodic solids have a low efficiency (in the
sense that they may need a large number of plane waves to con-
verge the DFT calculation). It is our experience that the Vanderbilt
scheme results in a significantly more efficient calculation. It is our
experience that for most cases, the best performance is obtained
using the RRKJ scheme.

From the PAW atomic calculation itself there is some important
information about the accuracy of PAW atomic data. For example,
it is recommended that the functions φni li(r), φ̃ni li(r) and p̃ni li(r)
all have comparablemagnitudes to avoid numerical instability and
to promote a good transferability. If this it is not the case, several
options are possible.

• Adjust thematching and cutoff radii (without allowing overlap-
ping spheres in the solid calculations).

• Change the pseudopotential scheme.
• Adjust the reference energies for unbound partial wave basis

functions or additional basis functions. Changing the reference
energy can reduce the magnitude of projectors, but it is impor-
tant to check that the logarithmic derivatives are correct [23] as
will be discussed further below.

To have accurate representation properties, for each l-quantum
number included in the partial wave basis, PAW atomic data must
lead to logarithmic derivatives of the eigenfunctions of the PAW
atomic Hamiltonian that match the corresponding logarithmic
derivatives of the eigenfunctions of the AE atomic Hamiltonian. By
construction, the logarithmic derivatives are equal at the energies
of the basis functions. If the agreement is not good enough, the ref-
erence energy for unbound states can be changed. Discontinuities
in the logarithmic derivatives of the AE partial wavefunctions rep-
resent the energies at which the wavefunctions have a node at the
matching radius. A reasonable choice of an unbound reference en-
ergy avoids these node energies. However if a unbound reference
energy is too close to the energy of other basis functions, the ba-
sis set is unable to span the function space required for accurate
calculations in the solid. This is often reflected in the form of the
projector functions. Each projector being a dual function of one
wavefunction, it must obey simultaneously to a constraint of nor-
malization for one wavefunction and to a constraint of orthogo-
nalization for the other wavefunction. If the basis functions are too
close in shape, the projector functions may have a large amplitude
compared to the amplitude of thewavefunctions and thismay lead
to numerical instabilities. In addition, a poor choice of basis func-
tions can be reflected in the poor agreement between the logarith-
mic derivatives of the AE and PS calculations in some of the energy
range of interest. Another possible problem is the appearance of
a discontinuity in the PAW logarithmic derivative curve at an en-
ergy where the exact logarithmic derivative is continuous. Most
of the time, this shows the presence of a ‘‘ghost state’’. It is some-
times possible to change the values of the reference energies in or-
der to make the ghost state disappear. Alternatively, adjusting the
method of pseudization VAE can also help avoid ghost states.

3.4. Pseudization of the local potential

As already seen above, the pseudization scheme for the lo-
cal potential can be chosen among Troullier–Martins, ultrasoft,
or Bessel schemes. Norm-conserving pseudopotentials are some-
times so deep (attractive near r = 0) that they produce ‘‘ghost
states’’. To eliminate a ghost state [23], one may select a different
angular momentum quantum number lloc and adjust the match-
ing radius rloc . Another solution is to change the pseudopotential
scheme. Selecting a simple Bessel pseudopotential (Eq. (11)) or
ultrasoft pseudopotential (Eq. (10)) often avoids ghost state solu-
tions. However, it is our experience, that in order to obtain accu-
rate results in solid calculations, it is often necessary to reduce the
matching radius rloc . Denoting the largest matching radius as rPAW,
we find that it is often reasonable to choose 0.6 rPAW ≤ rloc ≤

0.8 rPAW. A convenientway to find the best choice for rloc is to check
the valence energies obtained from a PAWatomic calculation com-
pared to a reference atomic all-electron (AE) calculation. By adjust-
ing rloc , the agreement can be improved.

4. PAW atomic data validation and efficiency

4.1. PAW atomic data validation

The PAW method is an all-electron method that uses auxiliary
functions (plane waves for instance) as working functions. If
the basis of partial waves is complete, PAW results must be in
agreement with reference all electron calculations. The question
of the measurement of the agreement of PAW and AE calculation
is still a subject of debate. Most of the time, a solid state calculation
is performed and the equilibrium volumes and bulk moduli are
compared. This can be done for several environments, such as
for metals or oxides, as has been recently studied for the GBRV
potentials [19].

To have a more flexible tool that allows comparisons between
codes and between PAW atomic data tables, Lejaeghere et al. have
recently introduced a new measure, named ∆, of the agreement
between two codes for a given structure [17]. It is defined as the
difference between the two equations of state, obtained by the two
codes:

∆ =


∆E2(V )dV

∆V
. (29)

In this equation,


∆E2(V )dV =
 Vf
Vi

(Ecode1(V )−Ecode2(V ))2dV and
∆V = Vf − Vi. The integrals over the initial and final volumes of
the structure are illustrated as the shaded region in Fig. 1. From
the use of Eq. (29) to determine the value of ∆ for each element, a
mean value for all of the elements in the dataset can be determined.
This ∆ assessment measure has been obtained for several codes
and several pseudopotential and is reported on the web site of the
authors [28]. The web site also provides the downloadable delta
calculation package which includes the results of solid state cal-
culations for 71 elements obtained with the AE code Wien2k [29]
(the equilibrium volume VAE, the bulk modulus BAE and its deriva-
tive B′

AE), as well as the associated crystallographic data.
We have used the delta calculation package to validate our

code and our new atomic data in comparison with the Wien2k
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Fig. 1. A schematic comparison of the equations of state (EOS) obtained by two
codes: Code 1 (black) and Code 2 (red), with the difference area over some volume
interval [Vi, Vf ] indicated by shading. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

code. The electronic structure calculations for the 71 elements
have been performed using the ABINIT code [14]. We have used
the recommended values [17] for the k-point sampling (6750/N
k-points in the Brillouin zone for a N-atom cell). A Fermi–Dirac
broadening of 0.002 Ha has been used to approximate the
Brillouin zone integrals. As indicated in [17], we have used the
crystallographic data (CIF files) provided with the delta calculation
package. In order to perform the test calculations with exactly the
same conditions as Wien2k comparison data, the total energy of
each element was evaluated at seven different volumes, without
geometry optimization of the internal parameters, ranging from
0.94 to 1.06 VS, where VS is the equilibrium volume deduced from
the CIF file. For each element, the results for EAbinit(V ) were fit to
the Birch–Murnaghan Equation of State (EOS) to obtain values V0
(equilibrium volume), B (bulk modulus) and B′ (the derivative the
bulk modulus) which could be compared with the corresponding
AE values VAE, BAE, and B′

AE.
The first step has been to validate the ABINIT code against the

Delta calculation process. For this we have used the PAW atomic
data labeled ‘‘PAW 0.9’’ provided on the GPAW web site [18]. In
order to implement the use of GPAW datasets within ABINIT, two
modifications to the ABINIT code were made. First since the GPAW
atomic data are provided in a XML format, we have implemented
the reading of XML files in ABINIT. Secondly, we added to ABINIT
the capability of using the same radial grid used in the PAW 0.9
package which is given for n grid points with index i (0 ≤ i ≤

n − 1) by r(i) =
a·i
n−i . We performed the ABINIT calculation for

the 68 elements of the PAW 0.9 table, obtaining a mean value of
∆ = 1.6meV for both a cutoff energy of 20Ha and40Ha. This value
is very close to the value obtained directly with the GPAW code
with the same PAW 0.9 package (1.7 meV) [28]. The small value of
∆ obtained using ABINIT validates the accuracy of the ABINIT code
in comparisonwith similar codes and theDelta calculation process.

4.2. PAW atomic data table generation

The second step has been to generate a new PAW atomic data
table following themethodology described above in Sections 2 and
3.We have generated a table of 71 PAWatomic data corresponding
to elements ranging from H to Rn, without At and lanthanides
(except Lu). All the PAW data have been obtained using the
ATOMPAW generator (v3.1.0.2) [25], starting either from existing
input files already provided on the ABINIT web site [30], or
from new input files. All the schemes discussed in Section 2 are
implemented in ATOMPAW, which makes it a very flexible tool.

With respect to the choice of the electronic configurations, from
H toBe, all the electrons are taken as valence electrons. For columns
IA, IIA, IIIB to VIIIB of the periodic table of elements, s and p semi-
core states are included in the valence. For columns IB and IIB, only
s and d electrons are taken as valence electrons. For columns IIIA
to VIIIA, only s and p electrons are taken as valence electrons. For
Lu, the f electrons are also included in the valence electrons. For
Pt, only s and d electrons are taken as valence electrons.

For the radial grid, a logarithmic grid was used with the form
r(i) = a(exp(d · (i − 1)) − 1), where 1 ≤ i ≤ n. The partial wave
basis included at least 2 partial waves per angularmomentum. The
PAWatomic dataset was designed to bewell convergedwhen used
with a plane wave energy cutoff of 20 Ha in the ABINIT code and
the cutoff radii were chosen accordingly. For this, we have tested
each element in the ABINIT code with a cutoff energy of 12, 15, 20,
and 40 Ha for plane waves. If a test PAW atomic dataset did not
converge with the 20 Ha cutoff, the cut-off radii were increased
until the convergence was achieved. All the calculations were
performed with the GGA-PBE exchange and correlation functional
in a scalar-relativistic framework. The crystallographic structures
used for each element is described in [17].

We obtain a mean value of ∆ = 0.4 meV for our whole table
(named JTH table). The values of ∆ for each element are shown in
Fig. 2. The use of the ∆ factor is very convenient: it allows for a
global measure of the accuracy of atomic data for each element,
as well as a mean value that characterizes a whole atomic dataset.
The value of 0.4 meV is very good compared with values already
published for other codes or for other PAW atomic data packages,
where the smallest values of ∆ are in the range 1.6–1.8 meV
[28,17].

However, one must be aware of some drawbacks using the ∆

factor.

• The ∆ value is by construction very dependent on the AE
calculations that are used for comparison. This means that we
must be very confident in the AE results, which may be difficult
to obtain. It is certainly necessary that the AE community
agrees on the tuning of the AE codes so that the values of VAE
(the equilibrium volume), BAE (the bulk modulus) and B′

AE (the
derivative of the bulk modulus) are well established for each
element in the studied crystallographic structures. It would also
be useful to add lanthanides and actinides in the AE references.

• The ∆ factor is based on calculations on pure elements in their
ground state crystallographic structures. It is also interesting
to have comparison with AE calculations in compounds like
oxides, as has been alreadydoneon theATOMPAWweb site [26]
and by Garrity et al. [19].

• In view of high-throughput calculations, it is extremely
important to have efficient PAW atomic data. The∆ factormust
therefore be given with an energy cut-off, and its convergence
with the energy cut-off must be given.

• What is the accuracy of the ∆ factor? What does it means to
have ∆ = 0.2 meV rather than 0.5 meV?

• We have noticed that for some elements, the ∆ factor is very
sensitive to the values V0, B and B′ obtained as a result of the
tuning of the input parameters of the atomic data generator.
This is not the case at all for other elements.

We therefore propose in the next section an alternative
definition of a ∆ factor to account for some of these drawbacks.

4.3. PAW atomic data efficiency: towards a new ∆ factor definition

The reason why some elements are very sensitive to the
accuracy ofV0, B and B′ (compared to theAE values) comes from the
large variation of the V0 and B values over the elements. V0 indeed
ranges from 7.2 Bohr3 for Boron to 117.7 Bohr3 for Cs, whereas B
ranges from 0.57 GPa for Ar to 401 GPa for Os, nearly three order of
magnitude. This means that a very small deviation of V0 from the
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Fig. 2. ∆ value as a function of element for a 20 Ha energy cut-off for the JTH table.
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Fig. 3. Comparison of the EOS obtained by two codes (a) for a high value of the bulk
modulus (b) for a small value of the bulk modulus.

reference AE value will give a very large value of the ∆ factor for
a large B value (Fig. 3(a)), whereas a large deviation of V0 from the
reference AE value will give a very small value of the ∆ factor for a
small B value (Fig. 3(b)).

For instance, using ABINIT with the PAW 0.9 atomic data, we
find aV0 deviation of 0.76% for Cs leads to∆Cs = 0.39meVwhereas
a V0 deviation of 0.76% for Os leads to ∆Os = 9.14 meV. The same
effect happens between elements that have close bulk moduli but
large differences in their equilibrium volumes.

To overcome this difficulty, we propose to define a ∆1 factor,
which is similar to the original∆ factor except it is ‘‘renormalized’’
to reference values of V0 and B for all the elements. Indeed the
Birch–Murnaghan energy is directly proportional to V0 and B (see
Appendix), and so is the ∆ factor (to first order). For each element,
we therefore define:

∆1 =
Vref Bref

VAEBAE
∆. (30)

The ∆1 factor is a re-scaled value of ∆ to a reference material
characterized by an equilibrium volume Vref and a bulk modulus
Bref . This allows a comparison of the ∆1 factor of all the elements,
as it is normalized to the same reference. We have chosen the
values of Vref = 30 Bohr3 and Bref = 100 GPa as they correspond
approximatively to the mean values of V0 and B over the 71
elements tested.

We have then calculated the ∆ and ∆1 factor for four energy
cut-offs (12 Ha, 15 Ha, 20 Ha, 40 Ha) and the atomic datasets
available with the ABINIT code: the GPAW PAW 0.9 package, the
GBRV-v1 package [31], and our new package (named JTH). A fourth
package is under construction by the PWPAW group [26] but the
work is in progress andwehave not used this package in this paper.
The results are presented in Tables 1 and 2.
Table 1
Comparison of the ∆ values (meV) as a function of cut-off energy for three PAW
atomic datasets, as calculated with the ABINIT code.

∆ (meV) 12 Ha 15 Ha 20 Ha 40 Ha

JTH (71 elements) 2.461 0.817 0.363 0.453
PAW 0.9 (68 elements) 4.845 2.289 1.559 1.552
GBRV-v1 (63 elements) 4.486 2.617 2.420 2.345

Table 2
Comparison of the ∆1 values (meV) as a function of cut-off energy for three PAW
atomic datasets, as calculated with the ABINIT code.

∆1 (meV) 12 Ha 15 Ha 20 Ha 40 Ha

JTH (71 elements) 7.671 2.187 0.888 0.970
PAW 0.9 (68 elements) 12.117 5.267 3.092 2.828
GBRV-v1 (63 elements) 8.243 5.698 5.363 5.155

For further comparison, when using the values given in [17] for
the VASP package (71 elements) [7], we obtain ∆ = 1.920 meV
and ∆1 = 3.786 meV (As indicated in [17], the energy cutoff is 15
Ha for most elements and 22 Ha for He, B, C, N, O, F and Ne). For
the three packages (JTH, PAW 0.9, GBRV-v1), ∆ and ∆1 are well
converged for a 20 Ha energy cutoff. For all the energy cutoffs, the
JTH package gives smaller ∆ and ∆1 values than the other two. For
∆, the difference is around 1.2 meV whereas for ∆1 the difference
is around 2 meV for converged energy cutoffs, between the JTH
table and the PAW 0.9 table.

If we look in detail at the ∆ factor (Fig. 4), we can see that for
the GBRV-v1 package, only two elements (N, O) are above 10 meV.
Without these two elements,∆ = 1.484meV,which is a very good
result when compared to the other packages [32].

With respect to∆1, (Fig. 5), the same trends are found: omitting
the elements H, N, O for which ∆1 > 20 meV, ∆1 = 2.944 meV
for the GBRV-v1 package. The ∆1 factor, treating low and high
equilibrium volume and bulk modulus elements on an equal
footing, allows an easy identification of questionable elements for
which the ∆1 is very high compared to the mean ∆1. It is also
noticeable that the JTH package has quite low values of ∆ and ∆1
for a 15 Ha energy cutoff, which is essential in the framework of
high-throughput calculations.

5. Conclusions

Thanks to the flexibility of the ATOMPAW generator, we have
been able to generate a 71 element PAW dataset table. This JTH
table has been validated against AE calculations using the ∆ factor
and also the modified ∆1 factor we have defined in this paper.
The JTH table has good accuracy and efficiency compared to other
packages which makes it a good candidate for high-throughput
calculations. This new table is provided in the XML format, that
makes it easily readable by all the PAW codes. It is distributed on
the ABINIT web site [30].
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Fig. 4. ∆ value as a function of element for a 20 Ha energy cut-off: comparison between JTH, PAW 0.9 and GBRV.
Fig. 5. ∆1 value as a function of element for a 20 Ha energy cut-off: comparison between JTH, PAW 0.9 and GBRV.
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Appendix. The Birch–Murnaghan energy

E(V ) − E0 =
9V0B
16




V0

V

2/3

− 1

3

B′

+


V0

V

2/3

− 1

2 
6 − 4


V0

V

2/3
 (A.1)
is proportional to B, so that obviously, the ∆ factor also: if one el-
ement A has a bulk modulus BA = αBC , where C is another ele-
ment, ∆B ≃ α∆C , with the hypothesis that Bcode1

A = αBcode1
C and

Bcode2
A ≃ αBcode2

C .
This is the same thing for the dependence against V0, although

it is more tedious to establish:
Let us consider 2 elementsA and C and suppose thatV code1

0 (A) =

αV code1
0 (C) and V code2

0 (A) = αV code2
0 (C) for simplicity (with the

same B and B′ for the two elements). The segment in which ∆ is
computed is defined by Vi = 0.94VS and Vf = 1.06VS where VS is
the center of the segment. VS is close to V code1

0 and V code2
0 , and for

simplicity, we suppose that VS(A) ≃ αVS(C).
As shown in the Appendix of [17],

∆ =


F(Vf ) − F(Vi)

Vf − Vi
(A.2)
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where

F(V ) =

 Vf

Vi
(Ecode1(V ) − Ecode2(V ))2dV =

4
n=−2

xnV−(2n+1)/3 (A.3)

using the definition of xn given in [17].
It can then been shown that each of the seven terms contribut-

ing to F is proportional to α3. For instance, for n = 4, the contribu-
tion to FA(Vf ) is:

xA4(V
A
f )−3

= −
1
3


9(V code1

0 (A))3Bcode1
A

16
(B′

code1(A) − 4)

−
9(V code2

0 (A))3Bcode2
A

16
(B′

code2(A) − 4)
2

(1.06VS(A))−3

≃ −
α6

3


9(V code1

0 (C))3Bcode1
C

16
(B′

code1(C) − 4)

−
9(V code2

0 (C))3Bcode2
C

16
(B′

code2(C) − 4)
2

(1.06αVS(C))−3

≃ α3xC4 (V
C
f )−3. (A.4)

We have therefore FA(Vf ) ≃ α3FC (Vf ), FA(Vi) ≃ α3FC (Vi) and
V A
f − V A

i ≃ α(V C
f − V C

i ).
So, at the end:

∆(A) ≃ α∆(C). (A.5)
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