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Using a straightforward extension of the analysis of Lieb and Wu, we derive a simple analytic
form for the ground state energy of a one-dimensional Hubbard ring at U/t = ∞. This result is
valid for an arbitrary number of lattice sites L and electrons N ≤ L. Furthermore, our analysis
provides insight into the degeneracy and spin properties of the ground states in this limit.

PACS numbers:

I. INTRODUCTION

For nearly fifty years, the Hubbard model1 has been
used to describe many-body effects in solids, capturing
the dominant competition between the delocalizing ef-
fects of the kinetic energy (with strength described by
a hopping energy t) and the localizing effects of the
electron-electron repulsion (with strength described by
an on-site Coulomb energy U). Despite its simple form,
it has provided significant insight into many-body prop-
erties of solids such as metal-insulator transitions, high-
temperature superconductivity, and magnetic states2,
largely because of the accessibility of its analytic and
numerical solutions. The analytic understanding of the
Hubbard model stems primarily from the seminal work of
Lieb and Wu3,4 who derived a “Bethe anzatz” method5

for determining eigenvalues and eigenfunctions of the sin-
gle band, one-dimensional Hubbard model with L lattice
sites and N electrons, and obtained an explicit expres-
sion for the ground state energy for a half-filled system
in the thermodynamic limit (N = L →∞).

Typical textbooks for courses in condensed matter
physics contain relatively little material about the Hub-
bard model. For example, Ashcroft and Mermin6 have
a one-paragraph qualitative description of the physics
of the model plus an end-of-chapter problem involv-
ing a two-site Hubbard model representing a hydrogen
molecule (the solution to which has been the subject of a
published paper7). Marder2 devotes a section of a chap-
ter to the Hubbard model including a presentation of the
mean field solution of an infinite one-dimensional sys-
tem. At larger values of U/t, the mean field solution in-
correctly predicts a ferromagnetic ground state and the
section concludes with the sentence: “There is no better
illustration of the difficulties involved in progressing sys-
tematically beyond the one-electron pictures of solids.”
The more recent textbook by Snoke8 does not mention
the Hubbard model.

Nevertheless, there has been substantial research de-
voted to analyzing the mathematics and physics of the
Hubbard model, particularly in one-dimension. Two re-
cent reviews9,10 summarize parts of the literature. Much
of this literature is very complex, involving the enumer-
ation of special symmetries and the analysis of compli-
cated nonlinear or combinatorial equations. On the other
hand, some of the basic ideas behind the analysis and

explicit results for some limiting cases are accessible to
graduate level instruction and can give students some in-
sight into many-body physics and some exercise in basic
quantum mechanical principles for non-trivial systems.

A common problem asked of students in an introduc-
tory quantum mechanics course is to determine the en-
ergy and degeneracy of the ground state of a system.
In the present paper, we present a proof that the exact
ground state energy of the single band, one-dimensional
Hubbard model for the case that there are L lattice sites
(L ≤ ∞) with periodic boundary conditions and N elec-
trons (N ≤ L) in the limit, U/t ≡ u = ∞ is

Eg = −2t

sin
(

πN

L

)

sin
(π

L

) . (1)

This simple analytic form is helpful for analysis and nu-
merical studies of the one-dimensional Hubbard model,
and our derivation of it provides insight into the nature
of the eigenstates of the model. The derivation of Eq.
(1) is suitable for an introductory course on solids. We
also examine the degeneracy of the ground state for some
simple cases.

II. DERIVATION OF GROUND STATE
ENERGY

Using second quantized notation, the Hamiltonian of
the Hubbard model is1

H = Hhop(t) +Hint(U)

= −t
∑

〈m,n〉

∑

σ=↑,↓
c†m,σcn,σ + U

∑
m

N̂m,↑N̂m,↓, (2)

where c†m,σ (cm,σ) creates (annihilates) an electron with
spin σ in the Wannier state localized at lattice site m,
and N̂m,σ = c†m,σcm,σ. The notation 〈m,n〉 denotes that
a sum is over nearest neighbor sites only. The creation
and annihilation operators that appear in Eq. (2) obey
the following relations (and their adjoints)

[
cm,σ, c†m′,σ′

]
+

= δm,m′δσ,σ′ and (3)
[
cm,σ, cm′,σ′

]
+

= 0, (4)
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where11
[
A,B

]
η
≡ AB + ηBA.

In this paper, we assume that the system described
by Eq. (2) is one-dimensional and has periodic boundary
conditions (such a system is often referred to as a Hubbard
ring). These two conditions ensure that each lattice site
has exactly two nearest neighbor sites. The site index
in Eq. (2) takes values 1 ≤ m ≤ L, with indices m and
m+L being equivalent. It can be shown (see Problems 1
and 2) that the Hubbard Hamiltonian obeys the relations

[
H,S2

]
−

= 0, (5)
[
H, Sz

]
−

= 0, (6)
[
H, S±

]
−

= 0, (7)

where S2 and Sz are the operators for total spin and
z-component of spin, and S+ and S− are the spin rais-
ing and lowering operators. Due to Eqs. (5) and (6), we
choose the energy eigenstates of the Hubbard Hamilto-
nian to be also simultaneous eigenstates of S2 and Sz

with quantum numbers S and MS , respectively.
The one-particle hopping term Hhop favors delocalized

states, an observation perhaps not immediately obvious
in Eq. (2) since it has been written in the basis of local-
ized Wannier states. We can rewrite this term in a more
revealing manner by noting that localized Wannier states
and delocalized Bloch states are related by the Fourier
transforms

cm,σ =
1√
L

L∑
ν=1

e+2πmνi/Lc̃ν,σ and (8)

c̃ν,σ =
1√
L

L∑
m=1

e−2πmνi/Lcm,σ, (9)

where c̃†ν,σ (c̃ν,σ) creates (annihilates) an electron with
spin σ in the Bloch state with quantum number ν, and
obeys fermion relations analogous to Eqs. (3) and (4).
Using Eq. (8), the Fourier transform ofHhop is (see Prob-
lem 3)

Hhop = −2t

L∑
ν=1

∑

σ=↑,↓
cos

(
2πν

L

)
Ñν,σ, (10)

where Ñν,σ = c̃†ν,σ c̃ν,σ. In cases where only this term in
the Hubbard model is important (such as when U = 0 or
when all the electrons’ spins are aligned), the Bloch states
serve as a natural basis. In those cases, Eq. (2) reduces
to a model of independent electrons on a periodic lattice,
and it is easy to verify that any N -electron Bloch state

|ν1, σ1; · · · ; νN , σN 〉 = c̃†ν1,σ1
· · · c̃†νN ,σN

|0〉, (11)

is an eigenstate of Hhop with energy

E = −2t

N∑

j=1

cos
(

2πνj

L

)
. (12)

The disadvantage of using Bloch states as a basis for
solving the Hubbard Hamiltonian in Eq. (2) is that they
complicate the two-particle interaction term Hint; by in-
troducing this interaction term, the model is no longer
one of independent electrons. In their study, Lieb and
Wu considered solutions to the one-dimensional Hub-
bard model for a specified electron spin distribution
with N↑ and N↓ indicating the total number of up and
down z-component spin orientations, respectively, where
N = N↑ + N↓. Applying the Bethe ansatz5, they found
that the total energy eigenvalues have a similar form to
those given in Eq. (12) for independent electrons3

E = −2t

N∑

j=1

cos kj . (13)

The so-called charge momenta kj , however, do not have
the simple form 2πνj/L given in Eq. (12) for indepen-
dent electrons. To find the charge momenta requires solv-
ing the set of coupled nonlinear equations (the Lieb-Wu
equations)

Lkj = 2πIj + 2
N↓∑

β=1

tan−1

[
4
u

(sin kj − λβ)
]

, (14)

and

2
N∑

j=1

tan−1

[
4
u

(λα − sin kj)
]

= 2πJα

+ 2
N↓∑

β=1

tan−1

[
2
u

(λα − λβ)
]

. (15)

Henceforth, we assume that N ≤ L and N↑−N↓ = 0 (+1)
if N is even (odd). The parameter Ij , where 1 ≤ j ≤ N ,
is an integer (half-odd-integer) if N↓ is even (odd). The
parameter Jα, where 1 ≤ α ≤ N↓, is an integer (half-odd-
integer) if N↑ = N −N↓ is odd (even). The λ′s are a set
of ordered, unequal real numbers λ1 < λ2 < ... < λN↓ .
Details of the derivation of these equations are given in
Yang’s examination of a one-dimensional system with
delta function interaction12 as well as a more recent re-
view of the Hubbard model by Lieb and Wu4. While the
derivation of these equations is quite challenging, Kar-
bach et al.13,14 provide an excellent introduction to the
Bethe ansatz for the Heisenberg model.

In Figure 1, some of the lowest energy eigenvalues of
the Hubbard Hamiltonian are plotted as a function of u
for the case N = L = 6. Even for such a small system,
the low-energy spectrum is quite complex for finite u.
However, in the infinite-u limit, disparate energy curves
asymptotically approach the same limiting energy level.
This limit, which represents a highly correlated system,
simplifies the mathematical properties of the Hubbard
model considerably. For the remainder of this paper, we
will focus on this limit, exclusively.

Since we are considering the case where N ≤ L, it is
reasonable to assume that the charge momenta for the
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FIG. 1: Plot of the lowest energies as a function of u for N =
L = 6. A thick (red) line represents a maximal spin S = N/2
state; a dotted (green) curve represents a S = (N−2)/2 state;
a dashed (blue) curve represents a S = (N−4)/2 state; a solid
(black) curve represents a S = (N − 6)/2 = 0 state. Symbols
denote a doubly degenerate energy. The arrow marks the
energy obtained by Eq. (1).

ground state are real so that terms of the form (sin kj)/u
in Eqs. (14) and (15) vanish in this limit. (Obviously,
this assumption is not valid if N > L since the ground
state energy is necessarily linear in u, making the kj ’s
necessarily complex15,16.) As a result, Eq. (15) simplifies
to

2N tan−1

(
4λα

u

)
= 2πJα + 2

N↓∑

β=1

tan−1

[
2
u

(λα − λβ)
]

.

(16)
By substituting this expression into Eq. (14) we obtain
an equation for the charge momenta at u = ∞,

kj(N↓, N↑) =
2π

L


Ij +

1
N

N↓∑

β

Jβ


 . (17)

In order to analyze the ground state, one possibility3,4

is to choose Ij and Jα to be consecutive integers (or
half-odd-integers) centered around the origin. With this
choice, if N is even,

N↓∑

β=1

Jβ = 0; (18)

otherwise, if N is odd,

N↓∑

β=1

Jβ =
N↓
2

. (19)

With this assumption, the charge momenta take the form

kj(N↓, N↑) =





2πIj

L
, N even

2π

L

(
Ij +

N↓
2N

)
, N odd.

(20)

Equation (20) is of the general form

kj =
2π

L
(j + j0) , (21)

where j is an integer and j0 is a real number. With this
choice of charge momenta kj , Eq. (13) can be summed
as a geometric series resulting in the energy equation

E = −2t

N∑

j=1

cos
[
2π

L
(j + j0)

]

= −2t
sin (πN/L)
sin (π/L)

cos
[
(2j0 + N + 1) π

L

]
, (22)

which has a minimum when

j0 = −N + 1
2

. (23)

The special value of j0 given in Eq. (23) results in the
minimum energy obtainable for the general class of wave
vectors given in Eq. (21). By inspection, this choice of
j0 is not the same as that in Eq. (20); in fact, there is
no reason to expect a priori that it would be. However,
the charge momenta can be chosen to be consistent with
Eqs. (21) and (23) by utilizing Eq. (7). We begin by
assuming that the energy eigenfunctions of H are known;
for a particular choice of N↑ and N↓, each eigenfunction
ψ(N↓, N↑) satisfies the eigenvalue equation

Hψ(N↓, N↑) = Eψ(N↓, N↑), (24)

and has a definite spin quantum number S. Applying
the spin-raising operator S+ to Eq. (24), one of two
things occurs: either the eigenfunction ψ(N↓, N↑) is an-
nihilated if it has minimal total spin quantum number
S = 1

2 (N↑ −N↓), or we obtain the eigenvalue equation

Hψ(N↓ − 1, N↑ + 1) = Eψ(N↓ − 1, N↑ + 1), (25)

where, due to Eq. (7), E is the same energy that ap-
pears in Eq. (24). Therefore, the set of eigenvectors and
eigenvalues that solves Eq. (25) is a subset of the set of
eigenvectors and eigenvalues that solves Eq. (24). This
process can be repeated to span all of the possible re-
lated spin configurations corresponding to the same en-
ergy eigenvalue E(M, M ′) = E(N↓, N↑), where the pos-
sible values of (M, M ′) are determined from limits of the
raising operations to be 0 ≤ M ≤ N↓, N↑ ≤ M ′ ≤ N ,
and M +M ′ = N . This argument suggests that Eq. (20)
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can be modified to take the form:

kj(N↓, N↑) =





2πIj

L
, N even,

2π

L

(
Ij +

M

2N

)
, N odd.

(26)

where 0 ≤ M ≤ N↓.
It is now a simple problem to verify that Eq. (26) sat-

isfies Eq. (23). First, we consider the case of N even. For
this case Eq. (23) is a half-odd-integer and Ij = j + j0
must be a half-odd-integer, which occurs when M is odd.
Since for all even N > 0, there is at least one choice of
odd M in the range 0 ≤ M ≤ N/2, this case is consistent
with the modified Bethe ansatz solution. Now consider
the case of N odd. For this case, Eq. (23) must be an
integer and Ij + M/2N = j + j0 must also be an inte-
ger, which occurs when M = 0. To summarize all of
these possibilities we conclude that the charge momenta
corresponding to the ground state can be chosen using
consecutive integers j centered at the origin of the form

kj(N↓, N↑) =





2π

L

(
j +

1
2

)
, N even,

2πj

L
, N odd.

(27)

Using these charge momenta, and minimizing Eq. (13),
we obtain the ground state energy expression in Eq. (1).
This concludes our derivation.

III. DEGENERACY OF THE GROUND STATE

In the previous section, we derived an expression for
the energy of the ground state at u = ∞. The simplicity
of this derivation and the resulting formula itself is ap-
pealing to an introductory examination of the Hubbard
model. However, this formula says nothing of the degen-
eracy of the ground state. Naturally, the question arises,
is the ground state at u = ∞ degenerate? Examination of
Figure 1 reveals that, at least for the case of N = L = 6,
the answer is highly so.

We begin with an observation: at u = ∞, the prob-
ability of two electrons occupying the same lattice site
vanishes. Therefore, there are only two configurations for
a lattice site: vacant (henceforth referred to as a hole)
or singly occupied17. In general, for a system of h holes,
the ground state is highly degenerate, with a degeneracy
denoted by d(h). In this section, we examine two special
cases, that of half filling (h = 0) and of one hole (h = 1).

A. Half filling

We begin our examination with the simplest case (half-
filling) where the number of holes is zero, h = 0; that

is, N = L. From Eq. (1), we find that for any half-
filled system, the energy of the ground state at u = ∞
is Eg = 0. The degeneracy of the ground state is the
number of possible ways of filling N = L holes with N
indistinguishable spin-1/2 particles

d(0) =
N !

N↑!N↓!
. (28)

In Figure 1, the energies of the d(0) states are plotted as
a function of u for the small half-filled system N = L = 6.
Results were obtained by exact diagonalization. In this
case, the degeneracy of the ground state at u = ∞ is
given by Eq. (28): for N = 6, d(0) = 20. We note that
in this case, one of the ground states is characterized as
having maximal total spin. This state is easily distin-
guished by having an energy that is independent of the
coupling parameter u (see Problem 7).

B. One hole

Next, we introduce one hole and examine its effect.
From Eq. (1), we note that all one-hole Hubbard rings,
regardless of their size, have the same ground state en-
ergy, namely Eg = −2t. In order to determine the de-
generacy, we use perturbation theory, taking Hint as the
unperturbed Hamiltonian and treating Hhop as a pertur-
bation. The unperturbed ground states |i〉 are degenerate
and have zero energy

Hint(U →∞)|i〉 = E
(0)
i |i〉 = 0. (29)

This unperturbed degeneracy D is given by the number
of possible ways of filling L holes with N = L− 1 indis-
tinguishable spin-1/2 particles

D =
(N + 1)!
N↑!N↓!

. (30)

The first order correction to the ground state energy
is the lowest eigenvalue of the matrix

W(1)
k` = 〈k|Hhop(t)|`〉. (31)

At u = ∞, higher order corrections to the ground state
energy vanish (see Problem 8); the lowest energy eigen-
states of the perturbation matrix in Eq. (31) are the ex-
act ground states in this limit. Furthermore, we observe
that this perturbation matrix can be put in block di-
agonal form, by appropriate ordering of the states from
Eq. (29). To prove this assertion we must more closely
examine the unperturbed ground states.

In Figure 2 we show several unperturbed ground states
defined in Eq. (29) for the case N = L − 1 = 7 and
N↓ = 3. With periodic boundary conditions, the state
depicted in (5′) can be obtained from arrangement (5)
by repeatedly moving electrons one at a time to near-
est neighbor sites with the provision that all intermedi-
ate states contain no doubly occupied lattice sites; the
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same cannot be said for states (1) through (4). There-
fore, states (5) and (5′) are said to be connected to each
other and disconnected from states (1) through (4). In
fact, states (1) through (5) represent the five distinct
spin configurations for that system. To indicate that the
unperturbed ground states can be sorted into different
spin configurations, we write them as |α, iα〉, where the
integer α denotes to which spin configuration the state
belongs, and iα is an arbitrary state label. Since states
in different spin configurations are disconnected,

〈α′, i′α′ |Hhop|α, iα〉 = 0, if α 6= α′. (32)

Therefore, the first order perturbation matrix is block
diagonal, with the number of blocks being the number of
distinct spin configurations for that system.

In general, the number of blocks is a complicated func-
tion that depends upon our choice of N and L. We treat
the simplest case, when N is odd; a restricted case for
even N is given as Suggested Problem 10. When N is
odd, it is easy to show that the number of connected
arrangements in each spin configuration is

C = NL = N(N + 1); (33)

this expression is valid provided that Nσ 6= 0 and N↑/N↓
and its inverse are not integers for Nσ > 1. With the
assumption that N↑ = N↓ + 1, this expression is neces-
sarily valid for an odd number of electrons. Therefore,
the number of distinct spin configurations is

D

C =
(N − 1)!
N↑!N↓!

= d(1); (34)

the last equality will be shown below.
Returning to Eq. (31), we factor the first-order correc-

tion as

W(1)
k` = −2t〈k|Hhop

(− 1
2

) |`〉; (35)

the lowest eigenvalue of W(1) corresponds to the maxi-
mum eigenvalue of the dimensionless operatorHhop(− 1

2 ).
By appropriately choosing the unperturbed basis defined
in Eq. (29), it can be shown that if N is odd, then each
row and column ofHhop(− 1

2 ) consists of only two nonzero
elements, which have the value 1

2 . Therefore,

〈k|Hhop

(− 1
2

) |`〉 ≥ 0, (36)

and the sum of the elements in every row or column is 1:
∑

|k〉
〈k|Hhop

(− 1
2

) |`〉 = 1, (37)

and
∑

|`〉
〈k|Hhop

(− 1
2

) |`〉 = 1. (38)

Nonnegative matrices that satisfy either Eq. (37) or Eq.
(38) are known as stochastic matrices18 and are well stud-
ied. These matrices describe the transitions of a Markov

(1)

(2)

(3)

(4)

(5)

(5’ )

FIG. 2: Possible one-dimensional spin arrangements for N =
L − 1 = 7 and N↓ = 3. Arrangements (1) through (4) each
represent a different spin configuration for this system; ar-
rangements (5) and (5′) represent the fifth and final spin con-
figuration. Arrangements (1) through (4) are disconnected
from one another and from arrangements (5) and (5′); ar-
rangements (5) and (5′) are connected to one another.

chain; their elements are the transition probabilities that
a system will jump from one state to another. Equations
(37) and (38) state that the total probability of transition
is unity. By the Perron-Frobenius theorem18, the max-
imal eigenvalue of these matrices is always 1, with the
corresponding unnormalized eigenstate being the unity
vector, whose elements are all 1. Since each block is a
stochastic matrix, we conclude that the ground state is
d(1)-fold degenerate.

IV. DISCUSSION AND CONCLUSIONS

The form of the ground state energy given by Eq. (1)
and its derivation provides additional insight into the na-
ture of the eigenstates of the one-dimensional Hubbard
model at u = ∞. The form of the energy Eq. (1) shows
that there is an electron-hole symmetry in the ground
state energy such that the energy of a system with N
electrons is the same as the energy of a system with L−N
electrons, corresponding to L − N and N holes, respec-
tively.

Due to its rich structure and relative simplicity, there
is an impressive literature devoted to solutions of the one-
dimensional Hubbard model. Several authors19–21 have
derived results equivalent to Eq. (1) in the thermody-
namic limit. Considering both finite and infinite systems,
Kotrla22 extended the approach of Caspers and Iske23 to
consider the u → ∞ limit of the one dimensional Hub-
bard model from the viewpoint of enumeration of all pos-
sible single occupancy states of the system. The analysis
of the minimum energy configuration results in an expres-
sion that is equivalent to our Eq. (1) although the explicit
analytic form is not given. Equation (1) also appeared
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in a paper by Kusmartsev24 that considers the response
of a Hubbard ring to a magnetic flux. Another related
result is by Schadschneider25, who augments the electron
hopping term of the original Hubbard model in Eq. (2)
with a bond-charge interaction with strength parameter
X. This change produces an analytically solvable model
that is equivalent to the Hubbard model at u = ∞.

Recently, Kumar26 considered the fixed boundary solu-
tions of a one-dimensional Hubbard system in the infinite
u limit. For this case, the Lieb-Wu analysis is not appli-
cable and the energy spectrum is quite different. He was
able to find the analogue of Eq. (1) for the fixed boundary
case.

More detailed analysis has been devoted to case where
L is even which for periodic boundary conditions al-
lows for bipartite symmetry4. Essler et al.27,28 derive
a method for finding all of the energy eigenstates by
augmenting the Bethe ansatz using generators associ-
ated with the SO(4) symmetry of the system. Their re-
sults are presumably consistent with those in this paper,
though they do not explicitly evaluate their equations
in the u = ∞ limit. Lieb and Wu4 and Goldbaum29

prove the existence of ground state solutions to the Bethe
ansatz equations for the restricted case of even N = L
and odd Nσ = N/2, and show that the ground state is
non-degenerate. It should be noted that in this case, the
ground state is unique only for finite values of u; in gen-
eral, at u = ∞ the ground state is degenerate. Figure 1
illustrates this for the case N = L = 6: for u < ∞ the
ground state is nondegenerate and has S = 0; at u = ∞,
d0 = 20.

Suggested Problems

1. Show that in second quantized notation, the total
spin operator S2 is given by (in units where ~ = 1)

S2 =
1
2
N̂ +

1
4

(
N̂↑ − N̂↓

)2

+
∑
n,m

c†n,↑c
†
m,↓cm,↑cn,↓,

where N̂σ =
∑

n

N̂n,σ is the number operator for

particles with spin σ.

2. Use the result of Problem 1 to verify that the Hub-
bard Hamiltonian commutes with the total spin op-
erator S2.

3. Using the Fourier transform in Eq. (8), derive the
expression given in Eq. (10) for Hhop.

4. Verify the energy equation in Eq. (22).

5. Starting from Eq. (12), show that if N = L or if
N is odd, the lowest energy eigenvalue for a system
of spinless independent fermions is the same as Eq.
(1).

6. Explain why the result in Problem 5 leads to the
following conclusion: if N = L or N is odd, the
ground state of a Hubbard ring at u = ∞ neces-
sarily includes one (and only one, up to the trivial
MS spin degeneracy) state of maximal total spin.

7. Explain why the energy of any Hubbard state with
maximal total spin is independent of the dimen-
sionless parameter u.

8. Verify the statement after Eq. (31) that the higher
order corrections to the ground state energy vanish.

9. Prove Eq. (33) and show that it is valid only if Nσ 6=
0 and N↑/N↓ (and its inverse) are not integers for
Nσ > 1.

10. When N is even, Eq. (33) is no longer valid for
every spin configuration. Particular spin configu-
rations may have additional periodicities that de-
crease the number of connected states in that con-
figuration. However, if N↑ = N↓, where Nσ is
prime, then there is only one spin configuration
which does not obey Eq. (33). From this observa-
tion, show that the degeneracy of the ground state
at u = ∞ for this case is

d(1) =
(N − 1)!
N↑!N↓!

− 2
N

+ 1. (39)
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