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A B S T R A C T

The challenge of computing ionic transport coefficients from first principles is to achieve the necessary convergence with respect to system size, simulation time, and
configurational sampling. Unfortunately current computer resources are not yet available for such convergence studies at the fully first principles level. In this work,
a lattice kinetic Monte Carlo model is used to study the convergence properties of transport coefficients, using the Li sub-lattice of the Li ion electrolyte Li2OHCl as an
example system. The specific transport coefficients representing tracer diffusion, effective diffusion, and mobility are carefully studied for their convergence
properties. Additionally, ion pair correlations of the effective diffusion are recast as a sum over events which allows for a detailed study of the nature of the
correlation in terms of time and spatial separation. This experience suggests a general method of performing simulations by using first a kinetic Monte Carlo model
followed by a first principles molecular dynamics study. For the Li2OHCl system, the kinetic Monte Carlo results provide both a reference for the Haven ratio due to
purely geometric effects and a measure of the computational effort needed to obtain meaningful molecular dynamics results. The combination of the two methods
provides further evidence of anti-correlated Li-ion motion in this system as predicted in a previous study.

1. Introduction

Renewed technological interest in discovering crystalline solid
electrolytes [1], has inspired the use of first principles computational
methods for studying the properties of these materials, especially in
simulating their ionic transport [2,3]. For ionic conductors whose
conductivity mechanisms involve significant correlations among the
mobile ions, it is computationally challenging to accurately simulate
the transport properties. One such system that has received attention
from several research efforts is Li2OHCl and related compounds [4-8].
For this material in its disordered cubic phase, it has been suggested [7]
that the mobile Li ions have correlated motion.

In fact, the notion of correlations affecting ionic conductivity is not
new. Fifty years ago, the study of ionic conductivity for simple me-
chanisms and structures included corresponding estimates of correla-
tion effects in terms of the Haven ratios [9-12]. More recently, the
development of solid electrolyte materials for all-solid-state-battery
technology has inspired new interest in accurate analysis and simula-
tion of ionic conductivity with more complicated mechanisms and
structures [13,14], for which the estimate of the Haven ratio is much
more challenging. In order to gain insight into the convergence issues
associated with evaluating ionic conductivity, we have analyzed an
efficient and simple model based on a lattice kinetic Monte Carlo ap-
proach [15].

The remainder of the paper is organized as follows. The general

formalism for evaluating ionic transport coefficients is reviewed in
Section 2. The details of the lattice kinetic Monte Carlo method are
presented in Section 3. The specific results of this work are based on the
lattice structure appropriate to describing the disordered cubic phase of
Li2OHCl, but can be adapted to disordered lattice models more gen-
erally. Section 4 presents the detailed results of statistical and con-
vergence properties of the lattice kinetic Monte Carlo simulations of the
ionic transport parameters. In Section 5.1 the lattice kinetic Monte
Carlo results are further analyzed in terms of temporal and spatial
correlations. First principles simulations of this system are contrasted
with the lattice kinetic Monte Carlo results in Section 5.2. Section 6
contains the summary and conclusions.

2. Formalism

There are several alternative methods of simulating ionic con-
ductivity in solids [12]. For example, Kubo [16] showed that the fluc-
tuation-dissipation theorem can be used in the absence of an explicit
electrical field to evaluate transport properties of materials. The diag-
onal components of the conductivity tensor, σαα, (where α denotes the
Cartesian components x, y, or z) is related to the time integral of the
time auto correlation function of the current density J(t) vector com-
ponents
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In this expression, V represents the volume of the simulation cell, kB is
the Boltzmann constant, and T is the temperature. The t0 brackets
indicate ensemble averaging over initial configurations at time t0 and
the evaluation averages the αα component of the conductivity tensor.
For a system having ions of charge eQi and instantaneous particle ve-
locities tṘ ( )i , the current density vector is given by

∑=
=

t e
V

Q tJ R( ) ̇ ( ),
i

N

i i
1 (2)

where, in principle, the summation over particles i should include all
ions in the simulation cell. However, in the following we will assume
that it is a reasonable approximation that only the mobile ions need be
included. We will further simplify the analysis to assume that there are
N mobile ions within the simulation cell, each with the same charge
Qi=Q. With these approximations and by evaluating the time integral
in Eq. (1), the diagonal conductivity tensor components can be ex-
pressed in terms of the instantaneous particle positions {Ri(t)} in the
form [12,17]
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expressed in terms of components of the charge moment vector which
has the expression
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using the shorthand notation

≡ + −δ t τ t τ tR R R( , ) ( ) ( ).i i i0 0 0 (5)

In this work, we focus our attention on the diagonal x-components of
the conductivity tensor. It is convenient to evaluate the square of the x-
component of the moment vector as a sum of two types of contribu-
tions.
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2 2
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Here the first “self-interaction” term includes the sum of the squares of
the x-components of the displacements of each of the individual ions:
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The second “cross-interaction” term includes the sum of products of x-
component displacements of all pairs of ions:
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The configuration average of the independent ion contribution
tΔ ( ) tsf 0 determines the tracer diffusion coefficient Dtracer according to

[12]
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Analogously, we can define a “cross” diffusion coefficient according to
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The configuration average of the sum of “self” and “cross” interaction
terms determines the effective diffusion coefficient according to [12]
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The ratio of the tracer and effective diffusion coefficients is known as

the Haven ratio (Hr) [9-11,18] which provides a measure of the cor-
relation of the conducting ions in terms of
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The diffusion coefficients are related to diagonal components of the
ionic conductivity tensor through the Nernst-Einstein relationship as
well as following from the Kubo formalism of Eq. (1):
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An alternative analysis of ionic conductivity follows from the inverse
Ohm's law as the response of the time averaged current density in the α
direction to an electric field Fα.

⟨ ⟩ =J t σ F( ) .α t αα α
Ohm (14)

Using Eq. (2) in the presence of an electric field in the x-direction
within the linear response regime, the Ohmic conductivity can be es-
timated from

=σ eQN
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where the ion mobility for a given initial configurations {Ri(t0)} is given
by
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Here the Fx superscript on the ion displacement is used to indicate the
field dependence of the trajectory for this case. The corresponding ef-
fective diffusion coefficient associated with the ion mobility can be
defined by

=D
k T μ t

eQ

( )
.μ

B x teffective 0 0

(17)

In order to accurately simulate ionic conductivity for a system using
Eqs. (13) or (15), several numerical and physical approximations must
be made. At the present time, the “state of the art” for simulating ionic
conductivity [3,7,8,13,14] uses first-principles methods to evaluate
forces between ions. However, while the physics of the particle inter-
actions is well represented, convergence of the results with respect to
simulation size and time may not be as well under control. In this work
we focus on these convergence issues for a simplified model of the ionic
forces.

3. Calculational details

In order to efficiently evaluate the expressions discussed in
Section 2, we used a lattice based kinetic Monte Carlo approach [19-
21]. The Nmobile ion positions {Ri(t)} are calculated within a supercell
lattice having NT available sites, each with an average occupancy of
o=N/NT<1 and each with ν nearest neighbor sites, at a series of
“times” ts. Here, we enumerate the steps s=1,2,...S with fixed time
intervals δτ according to

= +t t sδτ.s 0 (18)

Here, δτ is an arbitrary time increment which does not affect the si-
mulation. It can be related to a physical time with additional model
considerations. The Monte Carlo algorithm used in this work is as fol-
lows.

1. At the initial time t0, the sites are occupied using a random number
generator to produce {Ri(t0)}.

2. For subsequent time steps, s ≥ 1, the following procedure updates
the positions to {Ri(ts)}.
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(a) A random number generator chooses one of the occupied sites 1
≤ j ≤ N.

(b) A random number generator chooses a nearest neighbor to
Rj(ts−1) among the ν possible choices.

(c) If the chosen nearest neighbor is unoccupied, then site Rj(ts−1) is
moved to that site to form a new position Rj(ts) and the con-
figuration is updated accordingly to form {Ri(ts)}.

(d) Otherwise the configuration {Ri(ts)} remains the same as for the
previous time step.

Some practical details are noted as follows.

3. The algorithm can be modified on Step #2(c) by introducing an
activation energy EA so that for a system temperature of T, the up-
date of Rj(ts) the chosen and available site is made with a probability
exp(−EA/(kBT)).

4. Assuming ergodicity in the simulation, the data in the simulation
can be used for analyzing multiple time sequences by shifting con-
figurations at time ts to the initial time t0 by setting
{Ri(ts)}→{Ri(t0)}.

5. In order to relate the results for various simulation times and su-
percell sizes, the time counter s is related to a scaled time counter s
as the average number of hops per ion in the simulation. While the
time counter s is used within each simulation, the results are re-
ported in terms of the scaled time counter s . Explicitly, the scaled
time counter is defined according to

= − −s s o
N

(1 ) e .E kT/A
(19)

For this simple model [22], the activation energy EA is isotropic and
configuration independent and therefore the temperature does not
contribute to the statistical and convergence properties of the si-
mulations. In practice, simulations in the absence of a biasing
electric field F are carried out in the limit of infinite temperature.

6. In order to model the mobility in the presence of an electric field F
according to Eq. (15), the algorithm must be modified in the fol-
lowing way [20]. On a given time step ts for Step #2c involving ion j,
for a possible hop from nearest neighbor sites Rj(ts−1) to Rj(ts), it is
assumed that the activation energy EA is modified by

≡ − ⋅ − −eQ t tF R Rϵ 1
2

( ( ) ( )).j s j s 1 (20)

The definition of ϵ is such that for Q>0, when the hop is along the
field, the activation energy is slightly lowered. Now the update of
Rj(ts) is made with a probability exp(−(EA+ ϵ)/(kBT)); otherwise
the ion position is kept at its earlier position Rj(ts)=Rj(ts−1). In
practice, the values were chosen such that ϵ/(kBT)= 0.04 and EA/
(kBT)= 1.45 so that the linear approximation
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was sufficiently accurate and the Monte Carlo acceptance rate was
efficient.

The lattice for this study is based on the Li sites available for the
disordered cubic phase of Li2OHCl which is a member of a family of
promising solid electrolytes recently studied by our group and others
[4-8], as shown in Fig. 1. The three unique lattice sites within the cubic
unit cell are listed in the figure caption. In this case, each site has a
probability of occupancy of =o 2

3 and has 8 nearest-neighbors (ν=8).
Missing from this model are the effects of the Cl− ion located at frac-
tional coordinate ( ), ,1

2
1
2

1
2 and the effects of O located at the origin and

associated with an OH− ion. In practice, scaled units are used to
measure displacement and time.

→ ≡δX t τ δX t s a δX t s( , ) ( , )/( /2) ( , ),i i i0 0 0 (22)

where a/2 is the hop length along the x-axis for a cubic unit cell of
lattice constant a. For convenience, a was taken to be 2 within the
Monte Carlo simulations. In the remainder of this paper, all diffusion
constants are given in units of the square of the one-dimensional hop
length per hop/ion.

4. Results

4.1. Statistical analysis of Monte Carlo simulations

There are several competing variables which effect the simulation
results, including configuration sampling, number of simulation steps,
and sample size. Because of the computational accessibility of the
model, we can study each of these separately.

First we consider effects of the initial configurations {Ri(t0)}. In
order to illustrate the sensitivity of the “self” t sΔ ( , )sf 0 and “cross”

t sΔ ( , )cr 0 terms to the initial configurations, examples are shown in
Fig. 2. These examples were generated using supercells of size
12× 12×12 units (N=3456) for two different initial configurations

Fig. 1. Cubic unit cell for simulations in this study with the origin at lower back
left corner is shown together with available Li sites indicated with two-thirds
shaded volumes corresponding to their average occupancy. The fractional co-

ordinates of the unique sites are Li(1) at ( ), 0, 01
2 , Li(2) at ( )0, , 01

2 , and Li(3) at

( )0, 0, 1
2 .

Fig. 2. Comparison of the squared displacement results for a supercell com-
posed of 12×12×12 units and two initial configurations tR{ ( )}i 0

1 and tR{ ( )}i 0
2 .

Plots illustrate the “self” term t s NΔ ( , )/l
sf 0 and “cross” term t s NΔ ( , )/l

cr 0
(l=1,2) contributions as functions of the scaled step counter s . For the samples
shown, the curves for t s NΔ ( , )/sf 0

1 and t s NΔ ( , )/sf 0
2 coincide, while the curves

for t s NΔ ( , )/cr 0
1 and t s NΔ ( , )/cr 0

2 illustrate two extremes.
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tR{ ( )}i
l
0 , plotted as a function of the scaled step counter s . From this plot

it is apparent that both initial configurations give the same result for
t sΔ ( , )l

sf 0 which tends to increase monotonically with time. By contrast,
the t sΔ ( , )cr 0 term varies widely as a function of the step counter s and
very differently for the two different initial configurations. In order to
highlight its sensitive behavior, the plots of t sΔ ( , )cr 0 shown in Fig. 2
illustrate some of the extreme variations. For t sΔ ( , )cr 0

1 , the values are
generally positive, while for t sΔ ( , )cr 0

2 the values are generally negative.
In order to take advantage of statistical analyses of a general result

Yl from this study, it will be convenient to define a mean value and
standard deviation according to [23]

∑ ∑≡ ≡ ≡ −
= =

Y M
L

Y
L

Y M1 and Σ 1 ( ) ,Y
l

L

l Y
l

L

l Y
1 1

2

(23)

where L denotes the number of samples. From these values, it is often of
practical interest to estimate the number of samples Lf needed to to
ensure a fractional error of f. Assuming that the fractional error is well
estimated by the ratio of the standard deviation of the mean to the
mean value, we can infer that

⎜ ⎟≈ ⎛
⎝

⎞
⎠

L M
f

Σ / ,f
Y Y

2

(24)

which follows from the statistical relationship [23] = LΣ Σ /M Y fY .
In order to visualize the statistical properties of the squared dis-

placement functions, it is useful to consider histogram plots of their
distributions. The simulations were carried out for a supercell com-
posed of 12× 12×12 units (N=3456) fixing the time interval of the
simulation corresponding to s=15 hops/ion. These distributions were
generated from L=8×105 samples of the initial configurations

tR{ ( )}i
l
0 . Figs. 3 and 4 show histograms of t s NsΔ ( , )/(2 )l

sf 0 and
t s NsΔ ( , )/(2 )l

cr 0 , respectively. These plots show that the distribution for
Δsf has a Gaussian like shape, while the distribution for Δcr is highly
asymmetric. While not presented in a plot, we find that the histogram
plot for the corresponding ion mobility μ t( )x

l
0 given by Eq. (16) also has

a Gaussian shaped distribution.
The probability distribution for =Y t s NsΔ ( , )/(2 )l

l
sf 0 is highly loca-

lized with Gaussian shape with a mean value of MY=0.275 and stan-
dard deviation of ΣY=0.007. The probability distribution for

=Y t s NsΔ ( , )/(2 )l
l

cr 0 shows a very asymmetric distribution with average
value of MY=0.055 and a large standard deviation of ΣY=0.452. It is
apparent from the shape of this probability distribution, that the diffi-
culty in converging t sΔ ( , )cr 0 comes from the non-trivial number of

large value contributions. While the probability density of these large
value contributions is small, their contribution is significant. The range
of values of Δcr can be estimated as follows. At the lower bound,

≥ −Δ Δ ,cr sf (25)

which follows from the fact that the sum of Δsf + Δcr ≥ 0, because of its
proportionality to the squared length of the moment component px as
defined in Eq. (6). The upper bound can be estimated from the value
obtained when all of the hops are in the same direction which would
result in the very rare upper bound value of

≤ −N N sΔ ( 1) .cr
2 (26)

To better understand the shapes of the probability curves for the self
and cross correlation terms, it is useful to consider the analogous
quantities that can be derived from a one-dimensional random walk.
The trajectories of N independent random walkers X t{ ( )}i s

RW can be used
to compute Δsf

RW and Δcr
RW according to Eqs. (7) and (8), respectively.

In order to ensure correspondence with our cubic model with =s 15
hops per ion, the random walk simulations were performed for 10 steps,
representing two-thirds of the hops along the x-axis. In calculating these
numbers, care was taken to make sure that their scaling is consistent
with the corresponding cubic lattice model. The normalized probability
distribution is presented in Fig. 4. For this one-dimensional random
walk, with =Y NsΔ /(2 )cr

RW , the mean value and standard deviations are
given by MY=−4×10−5 and ΣY=0.470. The corresponding self
term =Y NsΔ /(2 )sf

RW for this random walk has the mean value and
standard deviation of MY=0.333 and ΣY=0.008, respectively. The
numerical values for this one-dimensional random walk system are
consistent with the textbook results. They differ from our three-di-
mensional cubic model system reflecting the effects of geometry and the
effects of particle interactions due to site occupations.

Another important consideration is the behavior of the standard
deviations of Δsf, Δcr and μx as a function of simulation size. We have
considered supercell sizes of n× n× nmultiples of the unit cell for 2≤
n ≤ 16. The ratios of standard deviations to mean values of Δsf, Δcr and
μx are given in Fig. 5. These calculations were all performed at a fixed
value of the effective hops s and are all well converged with respect to
the number of initial configurations tR{ ( )}i

l
0 . These plots show that the

ΣY/⟨Y ⟩ ratios converge to 0 with increasing simulation cell size for
both Δsf and μx. However, for Δcr, the ΣY/⟨Y ⟩ ratio seems to asymptote
to a non-zero value for very large simulation cell sizes.

Fig. 3. Distribution of values of t s NsΔ ( , )/(2 )sf 0 at a fixed time interval s cor-
responding to =s 15 hops/ion for a 12× 12×12 supercell (N=3456). The
probability distribution was constructed with 8× 105 initial configurations and
normalized to unity.

Fig. 4. Distribution of values of t s NsΔ ( , )/(2 )cr 0 at a fixed interval s corre-
sponding to =s 15 hops/ion for 12×12×12 supercell (N=3456). The
probability distribution was constructed with 8×105 initial configurations and
normalized to unity presented with filled black bars. The equivalent distribu-
tion for a one-dimensional random walk is represented with red-outlined bars
for comparison.
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Finally we consider the behavior of the standard deviations of Δsf,
Δcr and μx as a function of simulation time as measured by the scaled
parameter s . In order to carry out very long simulations, we consider
small supercells composed of 2×2×2 units with < <s0 500. Fig. 6
shows that the ratio of ΣY/⟨Y ⟩ for Y= Δcr asymptotes to a value which
is more than 20 times larger than that of Y= Δsf. According to Eq. (24),
this means that more than 400 times as many samples are needed to
converge Δcr compared with Δsf.

We also examined the convergence of the standard deviation in si-
mulating the mobility at different electric field strengths as shown in
Fig. 7. This plot shows that the standard deviation ratio asymptotes to
zero for → ∞s , although a larger field strength (within the linear
range) converges more rapidly.

4.2. Convergence of the transport coefficients

For evaluating the diffusion constants Dtracer, Deffective, and Dμ
effective,

it is necessary to carry out the simulations in the → ∞s limit. These
quantities are shown in Fig. 8 as a function of simulation cell size.
Results also show that the results calculated using the Kubo formalism

and using the Ohm's law formalism are in very good agreement. The
standard deviation of the results due to the averaging over initial
configurations {Ri(t0)} is too small to be seen on this scale.

In order to see the results in a little more detail, Fig. 9 shows the
Haven ratio as defined in Eq. (12) as a function of simulation cell size.
These results show that very good convergence at a value of Hr=0.819
is achieved for a supercell size of 6×6×6. On this scale, the error bars
(representing the standard deviation of the mean) are visible, but small
for both the Kubo and Ohm's law simulations.

Finally, in Fig. 10, a more realistic estimate of the time convergence
of the diffusion constant is presented for simulations on 6×6×6 unit
supercells. These calculations were performed on a very large number
of initial configurations so that the values are converged with their
standard deviation of the mean values smaller than the line width of the
plot. For these highly sampled simulations, the time convergence of
Dtracer mirrors that of Dcross such that their time convergence for the
individual terms is seen to be quite good at =s 2 hops/ion. Interest-
ingly, the total diffusion Deffective converges at short times for this
model.

For the highly sampled simulations in cubic simulation cells, the

Fig. 5. Ratios of standard deviations to mean values of Δsf and μx (left scale) and
Δcr (right scale) as a function of the supercell size parameter n. For Δsf and Δcr,
the calculations were performed at =s 15 hops/ion. For μx the calculations
were performed with 6 hops/ion on average along the field direction, corre-
sponding approximately to =s 880 hops/ion. The parameters EA/(kBT) and ϵ/
(kBT) were taken as described in Section 3.

Fig. 6. Values of ΣY/⟨Y ⟩ for Y= Δsf (left scale) and for Y= Δcr (right scale) as
a function of s for very long simulations. Simulations were performed in
2×2×2 supercells (N=16).

Fig. 7. Values of ΣY/⟨Y ⟩ for Y= μx as a function of s for very long simulations
performed for 2× 2×2 supercells (N=16). Results for two different values of
field strength as measured by ε/(kBT) are presented. For both cases the same
activation energy of EA/(kBT)= 1.45 was used.

Fig. 8. Comparison of diffusion constants Dtracer, Deffective, and Dμ
effective calcu-

lated using Eqs. (9), (11), and (17), respectively as a function n representing the
supercell multiplicity of n× n× n. All calculations were performed in the

→ ∞s limit and are also well converged with respect to initial configurations
{Ri(t0)}.
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time convergence of the diffusion coefficients can be well interpolated
by a simple analytic form based on a single exponential:

≈ ∞
−D s D( ) e ,w s

model
cross / (27)

where D∞ and w are fitting parameters. For the 6×6×6 supercell
shown in Fig. 10. Some typical values of the fitting parameters are
given in Table 1. For asymmetric simulation cells, it is found that ty-
pically more than one exponential function is needed to achieve an
accurate fit.

5. Analysis

5.1. Properties of the cross particle displacement contributions

The simulations presented in Section 4.1 document how sensitive
the calculations are to the cross particle contributions given by Δcr(t0,τ)
as defined in Eq. (8). In this section, the term is analyzed further in
order to detail its properties. An important point to make about Eq. (8)
is that for a collection of truly random and independent hoping events,
the ensemble average ⟨ ⟩δX t τ δX t τ( , ) ( , )i j t0 0 0 is equal to zero. Conse-
quently, the extent to which ⟨ ⟩t τΔ ( , ) tcr 0 0 differs from zero is a measure
of correlations in the system. Ideally, one could reformulate Eq. (8) into
correlated contributions to include in the evaluation in such a way that
they well approximate ⟨ ⟩t τΔ ( , ) tcr 0 0. Denoting this correlated cross
particle displacement contribution by ⟨ ⟩t τΔ ( , ) tcr

corr
0 0, we expect that it

should well approximate the full contribution in the sense that

⟨ ⟩ − ⟨ ⟩ <t τ t τ| Δ ( , ) Δ ( , ) | ϵ.t tcr
corr

0 cr 00 0 (28)

where ϵ is some small number within the desired convergence criteria.
In order formulate the correlated contributions, we first partition

the particle displacement defined in Eq. (5) into a sum over sequential
displacements. For displacement along the x-axis, we define a dis-
placement “event”Λ iλ(t0) such that

∑≡ + − =
=

δX t τ X t τ X t t( , ) ( ) ( ) Λ ( ).i i i
λ

ŝ

iλ0 0 0
1

0
(29)

Here λ is an index for the time sequence similar to that defined in Eq.
(18)

̂= +t t λδτ ,λ 0 (30)

where it is computationally efficient to define the time increment ̂δτ to
be an integer multiple of δτ used in simulation so that ̂ >δτ δτ . In this
work, a ̂δτ equivalent to the incremental scaled step counter =sΔ 0.25
hops/ion was used. The displacement event for particle i is then defined
according to

̂ ̂≡ + − + −t X t λδτ X t λ δτΛ ( ) ( ) ( ( 1) ).iλ i i0 0 0 (31)

Accordingly, the maximum step counter, ŝ , for the coarse grained
evaluation is chosen such that ̂ =ŝδτ τ . Now the cross interaction term
of Eq. (8) can be equivalently rewritten in the form

∑ ∑ ∑ ∑=
≠ = = = ′=

′t τ t tΔ ( , ) (Λ ( )Λ ( )).
i j

N

j

N

λ

ŝ

λ

ŝ

iλ jλcr 0
( ) 1 1 1 1

0 0
(32)

In this formulation, the idea is to choose from all of the cross event
products Λiλ(t0)Λjλ′(t0), only those which are “correlated”. The ex-
pectation is that the correlation is limited in time and space, so that it
should be possible to choose cutoff parameters tcut and Rcut to limit the
full summation in Eq. (32) in the form

∑ ∑ ∑ ∑⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟

≠ = = = ′=
′ ′t τ t t f t RΔ , (Λ ( )Λ ( )) , ,

i j

N

j

N

λ

ŝ

λ

ŝ

iλ jλ ijλλcr
corr

0
( ) 1 1 1 1

0 0 cut cut
(33)

where ′f t R( , )ijλλ cut cut , represents a function designed to model the cor-
relations of the system. For example, a simple functional form can be
written in terms of the Heaviside step functions Θ(x),

̂ ̂ ̂≡ − ′− − + ′ − +′f t R t λ λ δτ R t λ δτ t λδτR R( , ) Θ( ) Θ( ( ) ( ) ).ijλλ j icut cut cut cut 0 0

(34)

We first examine the effects of choosing a time correlation in terms
of tcut while setting Rcut such that the summation includes all events on
the basis of their separation, using a 2× 2 ×2 supercell. For this case
we find that choosing tcut corresponding to the scaled time counter =scut
2 hops/ion, results in a convergence parameter defined in Eq. (28) to be

⟨ ⟩ ≤t τϵ/| Δ ( , ) | 1tcr
corr

0 0 %. This result illustrates how the time correlation
of “event products” differs from time convergence of cross-interaction

Fig. 9. Simulated values of the Haven ratio Hr as defined by Eq. (12) as a
function of the simulation cell parameter n, comparing results calculated using
the Kubo (black circles) and Ohm's law (red squares) methods. The error bars on
the graph indicate the standard deviation of the mean of the value. The cal-
culations were performed with → ∞s and a large number of initial config-
urations.

Fig. 10. Convergence of D s( )effective , D s( )tracer and D s( )cross as defined in Eqs.
(11), (9) and (10), before taking the asymptotic limit, as a function of s . Si-
mulations were performed on a 6×6×6 supercell.

Table 1
Values of fitting parameters defined in Eq. (27) used for diffusion
coefficients simulated with the kinetic Monte Carlo model for
n× n× n supercells.

n D∞ w

2 0.054 0.344
6 0.060 0.472
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diffusion. For this system, the interpolation model defined in Eq. (27)
fits the simulation with D∞=0.054 and w=0.344. This means that
any simulation which is well converged with respect to initial config-
urations carried out to a time interval equivalent to =s 2 hops/ion, has
an error of 16% relative to the time converged value because

= =D s D( 2)/ 0.84cross cross . In order to reduce the convergence error to
1%, one needs to carry out the simulations out to a time interval
equivalent to =s 34 hops/ion. Nevertheless, in the formulation of the
cross interaction diffusion in terms of event products as given in Eq.
(33), we see that keeping only product pairs whose time differences are
within tcut corresponding to =s 2cut hops/ion gives good results. To
examine this further, we consider the fractional variances ΣY/⟨Y ⟩ for

=Y sΔ ( ) tcr 0 and sΔ ( ) tcr
corr

0 as shown in Fig. 11. Here we see that the
fractional standard deviation computed using the correlated events
converges toward zero while the fractional standard deviation com-
puted using the full cross displacement asymptotes to constant value,
consistent with the notion that keeping only the correlated events re-
duces the noise of the calculation. It is also interesting to note that an
empirical scaling relationship between the fractional variance is found
to be

⟨ ⟩
≈

⟨ ⟩s s s s
Σ
Δ ( )

Σ
Δ ( )

1
/(2 )

,s sΔ ( )

cr
coor

Δ ( )

cr cut

cr
coor

cr

(35)

where in this case s s/(2 )cut represents a multiplier for the data sampling
made possible by including the correlated terms in Eq. (33) with tcut.
This scaling is shown in Fig. 11.

In investigating spatial correlations in evaluating Eq. (33), it was
found that a large value of Rcut is needed to converge the cross inter-
action diffusion. For example, for cubic n× n× n supercells, for all 1≤
n ≤ 16, we found it necessary to include all events in the simulation
according to their spatial separation in order to achieve converged re-
sults for Δcr

corr. Because the restricted sum in Eq. (33) for our model
scales as n ŝ2 6 2, it is computationally difficult to examine cubic simula-
tion cells with n>16. However, it is feasible to study the nature of the
long spatial range correlations, within an asymmetric supercell. For
example, we performed a series of simulations for the 80×2×2 su-
percell system, separately studying the effects of time and space cor-
relations. The results are presented in Fig. 12. For this system, we found
that → ∞D s D s( )/ ( )f

cross cross =95% for =s 62f hops/ion and that value
was used in the evaluations presented in the figure. The results show
that for this system the time correlation is well converged for ≥s 8cut

hops for ions, but the spatial correlation is only well converged at a
distance of Rcut ≥ 20a/2.

5.2. Statistical analysis of first principles simulations

The inspiration for this detailed study of the statistical properties of
transport coefficients came from our recent first principles investigation
[7] of the solid state electrolyte Li2OHCl. In the disordered cubic phase
of this material, the Li sublattice is the same as that shown in Fig. 1.
While the first principles simulations are able to incorporate much more
physically realistic interactions of the material into the simulations, the
increased physical accuracy reduces the number of hops/ion that can be
computed compared to the results obtained with the same computer
resources using the kinetic Monte Carlo model. The hope is that our
kinetic Monte Carlo simulations for this system can be used together
with the first principles simulations to obtain a more complete under-
standing of its ionic diffusion. Of particular interest is the result sug-
gested by comparing simulations for Dtracer with experimental results
for the ionic conductivity using Eq. (13), that at experimentally ac-
cessible temperatures, the Haven ratio Hr for this system is greater than
1 and increases with decreasing temperature.

In the present work, we performed both first principles simulations
and kinetic Monte Carlo simulations using 2× 2×2 supercells. Apart
from using a smaller simulation cell in order to improve the computa-
tional statistics, the computational methods used for the first principles
simulations were the same as those used in our previous work [7]. In
particular, the first principles formalism is based on density functional
theory (DFT) [24,25] implemented using the projector augmented wave
(PAW) method [26] using the Quantum Espresso software package
[27]. The calculational parameters were similar to those specified in the
previous publication [7] except that the plane wave expansion of the
wavefunctions included reciprocal lattice vectors |k+G|2 ≤ 35 Ry and
the wave vector sampling of the Brillouin zone included a 2×2×2
grid.

For this study, twenty randomly generated configurations were
prepared for 2×2×2 supercells representing the disordered cubic
phase of Li2OHCl. The cubic lattice constant was fixed at a = 3.91 Å.
The eight O and eight Cl positions were fixed at their ideal lattice po-
sitions. The 16 Li positions were randomly selected based on the unit
cell shown in Fig. 1 and hydrogen locations were placed with the OH

Fig. 11. Comparison of fractional standard deviations ΣY/⟨Y ⟩ for correlated
and non-correlated evaluations of cross-interaction displacements evaluated for
2×2×2 supercells. For ⟨ ⟩t τΔ ( , ) tcr

corr
0 0, the time correlation was chosen cor-

responding to =scut 2 hops/ion, while the spatial correlations were unrestricted.
The plus symbols denote results derived from the full calculations of
⟨ ⟩t τΔ ( , ) tcr 0 0 scaled as explained in the text.

Fig. 12. Plots of D s( )f
cross evaluated for a 80×2×2 supercell for =s 62f hops/

ion. The blue line shows the value calculated using Eq. (8). The black circles
show the results obtained from using Eq. (33) to calculate t τΔ ( , ) tcr

corr
0 0 with

scut as indicated on the horizontal axis (in units of hops/ion) and no spatial
correlation. The red crosses show the results obtained from using Eq. (33) to
calculate t τΔ ( , ) tcr

corr
0 0 with Rcut as indicated on the horizontal axis (in units of

a/2) and no time correlation.
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bond length assumed to be 1.0 Å and a randomly chosen bond angle
within all possible 4π radians. For each of the twenty initial structures,
the static lattice internal energies were optimized at constant volume.
Subsequently, first principles molecular dynamics simulations for these
twenty optimized structures were performed at constant volume for two
different target temperatures of T=750 K and T=1000 K. The si-
mulations were performed in a microcanonical ensemble, at constant
energy in terms of the kinetic energy associated with nuclear motion
and electronic total DFT energy. The approximate simulation tem-
peratures were controlled by initiating the calculations with velocity
distributions corresponding to twice the target temperature values.
While the first principles simulation times extended to τ = 180–250 ps
for the simulations at target temperature T=750K and to τ =
90–170 ps for the simulations at target temperature T=1000K, it is
clear that the results are not converged with respect to configuration
averaging and with simulation time. Nevertheless, by pairing the first
principles results with analogous kinetic Monte Carlo simulations,
taking care to use equivalent levels of statistics, it is possible to make a
statistically significant differentiation of the two models. In this case,
the first principles simulations include, in addition to the realistic
treatment of interparticle interactions, the effects of lattice vibrations,
and a possible “gating” mechanism of the OH bond orientation. On the
other hand, the kinetic Monte Carlo model includes only the geometric
features of the Li sublattice.

In order to align the two calculations, we noted that for the kinetic
Monte Carlo simulations, the parameter s represents the hops/ion.
According to the extension of Eq. (7) for three-dimensional diffusion,
the hops/ion can be estimated for a first principles simulation at a time
duration τ according to

≈
+ +

s
t τ t τ t τ

N a
Δ ( , ) Δ ( , ) Δ ( , )

( /2)
.τ

x y z
sf 0 sf 0 sf 0

2 (36)

In this case a2/2 approximates the three-dimensional hop length for this
system, and sτ approximates the number of hops for the simulation time
τ. It is reasonable to assume that the hop counter sτ determined from
each first principles simulation run is analogous to the scaled hop
counter s used in the Monte Carlo simulations. In this way, we could
deduce that on average the two sets of temperature simulations corre-
sponded to =s 11 hops/ion and =s 3.5 hops/ion for the 1000 K and
750 K simulations respectively. The corresponding ranges of s were
4.75–21.25 and 1.5–5.6, respectively. In order to improve the statistical
sampling, each of the first principles simulations was analyzed sepa-
rately, averaging the results for the entire runs into =s 1 hop/ion
segments and determining the average temperature of each run. Cor-
respondingly, for both the T=1000 K and T=750 K temperature
ranges, sets of 20 Monte Carlo simulations were performed using si-
milar sampling statistics. That is for each Monte Carlo run, the total
simulation was fixed at =s 11 (3.5) hops/ion for the T=1000 K (750
K) cases and the results for the entire run was averaged by analyzing

=s 1 hop/ion segments. While physical temperature effects are not
explicitly included in the Monte Carlo runs, their effects on the statis-
tical sampling were modeled as closely as possible in this way. The
results were analyzed in terms of the Haven ratios, calculated from Eq.
(12) at finite simulation time corresponding to =s 1 hop/ion and the
results are presented in Fig. 13.

The results for Hr shown in Fig. 13 show substantial statistical noise
as well as systematic error, however a clear distinction of the behavior
of ion diffusion in the realistic “first principles”model relative to that of
the kinetic Monte Carlo results is demonstrated. Knowledge of sys-
tematic errors comes from the Monte Carlo studies for which it was
shown previously that at this level of statistical time, the simulations
were still not at their asymptotic limit. The value of the Haven ratio
from the Monte Carlo model for a 2× 2 ×2 supercell converged with
time intervals of =s 1 hop/ion is Hr ≈0.92, while the converged value is
Hr=0.84. Nevertheless, the results for the first principles simulations
suggest that Hr>1 in the temperature range of T=750 K and

T=1000 K and also suggest a temperature dependence of Hr such that
Hr(750 K)>Hr(1000 K). The simulations at T = 750 and 1000 K were
performed in order to improve the statistics, but in reality the material
is not expected to exist in its crystalline form at such high temperatures.
In our previous work [7], the suggestion was made that Hr is sig-
nificantly larger than 1 in the temperature range of 315< T<470 K
based on simulations with inferior statistics and comparing to experi-
mental conductivity measurements at those temperatures.

It is also interesting to consider possible mechanisms that cause
Hr>1 for this system. A possible physical mechanism comes from
observing the short time behavior of Dcross(τ) which is shown in Fig. 14.
In Fig. 14, the value of Dcross(τ) is shown for a simulation with average
temperature 1074 K simulated to 140 ps and final value of Δsf/

Fig. 13. Results of combined first principles and Monte Carlo study of the
Haven ratio for the disordered cubic phase of Li2OHCl simulated at a target
temperature of 750 K (filled symbols) and a target temperature of 1000 K (open
symbols). For each target temperature, the blue symbols indicate the first
principles results calculated for 20 initial configurations at the indicated
average temperatures. The orange symbols indicate the Monte Carlo results
calculated for 20 initial configurations with comparable statistics to the first
principles runs as explained in the text. For the Monte Carlo results the hor-
izontal axis placement is arbitrarily assigned for visualization. The averaged
first principles results are indicated with black symbols and standard deviation
of the mean error bars. The averaged Monte Carlo results are indicated with red
symbols and standard deviation of the mean error bars. The black and red ar-
rows highlight the averaged first principles and Monte Carlo values of Hr.

Fig. 14. Results of first-principles molecular dynamics simulation of 2×2×2
supercell of Li2OHCl at a temperature of T=1074K to determine Dcross(τ) for 0
≤ τ ≤ 2 ps.
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N=89Å2. In this calculation, the averaging over initial configurations
was achieved by averaging the full simulations in terms of τ=7ps
segments; the first 2 ps of the resultant Dcross(τ) are presented. It is in-
teresting that Dcross(τ)< 0 throughout this time range and that within
the first 0.2 ps there is a negative dip indicating that the short time
motions (vibrations) of the lithium atoms are anti-correlated. It can be
argued that this anti-correlated property of the short time motion of the
lithium ions contributes to the net bias for anti-correlated hopping
which leads to a Haven ratio greater than 1.

6. Summary and conclusions

The results of this study both provide insight into the transport
properties of a specific system, the disordered cubic phase of Li2OHCl,
and also provide detailed analysis of the statistical and convergence
properties of transport simulations more generally. The work in this
paper was motivated by the challenge of reaching the large statistical
time scales (hops/ion) necessary to study these convergence properties.
With the help of a lattice kinetic Monte Carlo model, it is possible to
explore aspects of the transport simulations which rely on long simu-
lation times, large simulation cells, and sampling over large numbers of
initial configurations. For the Li2OHCl system, we have been able to use
the lattice kinetic Monte Carlo model together with first principles si-
mulations to improve the prediction of the ionic correlations. While the
lattice kinetic Monte Carlo model used in this work was based on the Li
sublattice of the disordered cubic phase of Li2OHCl, we expect that the
qualitative statistical and convergence properties of the results can be
generalized to other lattices.

In this work, we considered both transport coefficients calculated in
the absence and presence of an applied electric field. Evaluated for a
fixed supercell and fixed simulation time, the distribution of values
obtained for different initial configurations was determined. We found
that the distributions for t s NsΔ ( , )/2sf 0 and correspondingly μ t s( , )x 0
have a Gaussian shape and standard deviation that approaches zero in
the limit of large sample size as represented by large supercells in the
periodic boundary formulation. By contrast, the distribution of values
of t s NsΔ ( , )/2cr 0 is found to have a very asymmetric distribution with a
standard deviation that limits to a non-zero constant in the large su-
percell limit. The ratio of the standard deviation to mean value is found
to limit to a non-zero constant in time for both the Δsf and Δcr terms.
However, the ratio of the standard deviation to mean value of μx tends
to zero in the long time limit at a rate that depends on the applied field
strength used in the calculations. The statistical results indicate that for
the Kubo formalism, the primary difficulty of convergence is due to the
Δcr term which requires a large number of initial configurations. For the
Ohm's law formulation of the transport simulations, the statistical re-
sults indicate that calculation of ionic conductivity would benefit from
use of a field strength adjusted to the largest magnitude possible while
still remaining in the linear response regime. Adapting the Ohm's law
formulation to first principles simulations would need additional con-
siderations.

The lattice kinetic Monte Carlo simulations also were used to assess
the convergence of the transport parameters with respect to simulation
time and system size given high convergence with respect to initial
configurations. In terms of supercell size, the results show that for this
lattice geometry the properties of interest are well converged for a cubic
supercell composed of 6×6×6 unit cells. In terms of simulation time,
the results for cubic supercells, both D s( )tracer and D s( )cross can be re-
presented by a simple interpolation form from which the asymptotic
form can be determined. For the lattice considered in this work,
D s( )effective converged at very short time. It is not clear whether or not
this feature is more generally true for other lattice geometries.

This work also introduces an alternate formulation of Δcr in terms of
a sum over event products for the purpose of considering temporal and/

or spatial correlations. For an example system, we found that including
only event pairs separated in time by scut=2 hops/ion or less in the
calculation of Δcr

corr reduced the fractional standard deviation sub-
stantially. This suggests that, for long simulations, restricting the sum
over event products in time can be used to reduce the noise in the
calculation and therefore improve the calculational efficiency.
Translating this idea into a practical computational scheme is not tri-
vial, since it is generally difficult to estimate scut, but probably worth
further consideration. This study also showed that spatial correlations
in this system are long range.

The lattice kinetic Monte Carlo simulations were used to closely
analyze the statistics of analogous first principles simulations of Δcr(t0,τ)
the full Li2OHCl lattice. We were able to improve the statistical analysis
to provide further evidence about the Haven ratio, showing that Hr>1
at the simulation temperatures. Interestingly, a plot of Dcross(τ) from the
first principles simulations, shows negative values for 0≤ τ≤ 2 ps with
a negative peak at approximately τ=0.2 ps. This time generally cor-
responds to vibrational modes in the lattice and suggests that these
vibrations may lead to short time anti-correlated motions. The first
principles result for Dcross(τ) shown in Fig. 14 can be contrasted with the
corresponding result for the lattice kinetic Monte Carlo model which
has a shape similar to that shown in Fig. 10, monotonically increasing
above zero. This example shows how the lattice kinetic Monte Carlo
simulations can be used to estimate the level of statistics necessary to
converge the more accurate simulations of the transport parameters.
The lattice kinetic Monte Carlo results for the transport parameters can
also serve as a well defined reference which captures the geometric and
site blocking effects.
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