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Fundamental aspects of the structural and electrolyte properties of Li2OHCl from simulations
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Solid-state electrolytes that are compatible with high-capacity electrodes are expected to enable the next
generation of batteries. As a promising example, Li2OHCl was reported to have good ionic conductivity and
to be compatible with a lithium metal anode even at temperatures above 100 ◦C. In this work, we explore
the fundamental properties of Li2OHCl by comparing simulations and experiments. Using calculations based
on density functional theory, including both static and dynamic contributions through the quasiharmonic
approximation, we model a tetragonal ground state, which is not observed experimentally. An ordered
orthorhombic low-temperature phase was also simulated, agreeing with experimental structural analysis of
the pristine electrolyte at room temperature. In addition, comparison of the ordered structures with simulations
of the disordered cubic phase provide insight into the mechanisms associated with the experimentally observed
abrupt increase in ionic conductivity as the system changes from its ordered orthorhombic to its disordered
cubic phase. A large Haven ratio for the disordered cubic phase is inferred from the computed tracer diffusion
coefficient and measured ionic conductivity, suggesting highly correlated motions of the mobile Li ions in the
cubic phase of Li2OHCl. We find that the OH bond orientations participate in gating the Li ion motions which
might partially explain the predicted Li-Li correlations.
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I. INTRODUCTION

The drive to produce all-solid-state batteries has led to
exploration of novel solid-state materials that can replace
traditional liquid electrolytes. There are many factors that
determine whether a material can be used in an electrochemical
cell, with one of the most important being that it is a very
good ionic conductor. With the demand for batteries to have
large energy and volumetric densities, all solid-state lithium
ion batteries are very promising. In a battery, the electrolyte
functions to allow transport of the energy storing ion between
the electrodes while preventing the passage of electrons. This
allows for the electrons to be passed through an external circuit
and do work. An efficient mechanism that often results in high
mobility of the “working” ion involves lattice structures with
fractionally occupied (disordered) sites for the working ion.

Recently, two independent experimental investigations
[1,2] showed that introducing defects into the disordered phase
of crystalline Li2OHCl can enhance its Li ion conductivity,
suggesting this system to be very promising as an electrolyte
material for all solid-state Li ion batteries. Earlier studies
reported that Li2OHCl and related materials have a low-
temperature orthorhombic structure [3,4] having low ionic
conductivity and a high-temperature cubic structure [3–5]
having increased ionic conductivity. The temperature of the
phase transition has been reported [1,4] to be approximately
35 ◦C, depending upon sample preparation. In fact, very little
is known about the low-temperature phase of Li2OHCl other
than its reported [3,4] orthorhombic structure. In this work,
we report a detailed experimental and computational study of
pure Li2OHCl in both its low- and high-temperature structures
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in order to understand their fundamental properties and their
relationships to the electrolyte capabilities of this material.

II. METHODS

A. Computational methods

In this work, computations were based on density functional
theory [6,7] using the projector augmented wave (PAW)
formalism [8]. The ATOMPAW code [9] was used to generate
the PAW basis and projector functions, and the solid-state
materials were modeled with periodic boundary conditions
using the QUANTUM ESPRESSO software package [10]. The
software packages VESTA [11] and XCRYSDEN [12] were
used for visualizations of structural properties at the atomic
level, and FINDSYM [13] helped in space-group analysis of
the structures. MATLAB [14] was used in the quasiharmonic
analysis of the Helmholtz free energy on a three-dimensional
grid of lattice parameters. It was also used in visualizing
histograms of the OH orientations.

The exchange-correlation functional was approximated
using the local-density approximation [15] (LDA). The choice
of LDA functional was made based on previous investigations
[16–18] of similar materials which showed that provided that
the lattice constants are scaled by a correction factor of 1.02,
the simulations are in good agreement with experiment, espe-
cially lattice vibrational frequencies and heats of formation.

In general, self-consistent field and structural optimization
calculations were well converged with a plane-wave expansion
of wave vectors and reciprocal lattice vectors including
|k + G|2 � 64 Ry. However, a larger plane-wave expansion
including |k + G|2 � 90 Ry was needed for using density
functional perturbation theory, which involves evaluating
derivatives with respect to atomic displacements [19–21],
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for the simulations of the phonon modes, as discussed
in Sec. III A 2. For converging the electronic structures of
the tetragonal and orthorhombic structures, zone-centered
k-point grids of 12 × 12 × 12 and 12 × 12 × 6 were used,
respectively. The total energy tolerance of the self-consistent
field calculations was set to 10−12 Ry and the resulting
forces were converged within 7 × 10−4 eV/Å. The phonon
density of states was calculated with an energy convergence
parameter of 10−14 Ry for the density functional perturbation
self-consistent cycles. The interatomic force constants were
calculated from density functional perturbation theory using
3 × 3 × 3 and 3 × 3 × 2 zone-centered phonon q-point grids
for the tetragonal and octahedral structures, respectively. The
resultant force constants were then interpolated to evaluate
the phonon density of states using the finer q-point mesh
of 10 × 10 × 10 and 10 × 10 × 5 for the tetragonal and
orthorhombic structures, respectively. The acoustic sum rule
was imposed along the diagonal elements of the dynamical
matrices [21] at q = 0.

In order to simulate the disordered cubic structures, the
numerical accuracy of the calculations could be relaxed while
ensuring that energy differences were calculated with errors
less than 7 × 10−4 eV/formula-unit. The plane-wave expan-
sion included |k + G|2 � 45 Ry and the energy tolerance of
the self-consistent field was set to 10−8 Ry. For simulations
based on supercell sizes 2 × 2 × 2, 3 × 3 × 3, 4 × 4 × 4,
and 5 × 5 × 5, using the corresponding zone-centered k-
point sampling grids of 3 × 3 × 3, 2 × 2 × 2, 1 × 1 × 1, and
1 × 1 × 1, respectively. The molecular dynamics simulations
were performed using 3 × 3 × 3 supercells using a single
zone-centered k point to sample the Brillouin zone. A time
step of 0.96 fs was used for all simulations. Each simulation
was done using the microcanonical ensemble (NVE). The
temperature was controlled by initializing the atoms of the
relaxed supercell with Boltzmann distribution of velocities
corresponding to twice the target temperature. We found that
within the first 0.03 ps of the simulation run, the temperature
typically dropped to approximately its target temperature.
Simulations were carried out for 60–135 ps. Throughout the
simulations, we found that the total energy remained constant
except for a small drift per formula unit of 6 × 10−7 eV/fs and
a corresponding positive drift in the simulation temperature.

B. Experimental methods

In previous work [1], the “fast-cooled” samples of Li2OHCl
were reported. In this work, we focus on “slow-cooled”
samples in order to make it easier to compare with model
calculations. The synthesis of slow-cooled Li2OHCl was based
on the methods previously reported [1]. All reagents were dried
under vacuum at 90 ◦C for 4 h prior to use. LiOH (Sigma
Aldrich, � 98%) and LiCl (Sigma Aldrich, � 99%) were
mixed in a nickel crucible and sealed with a copper gasket
in a bomb reactor inside of an argon-filled glove box. The
reactor was heated to 350 ◦C for 24 h at a rate of 25 ◦C/h,
then slowly cooled to 250 ◦C at 8 ◦C/h, maintained at 250 ◦C
for 24 h, and then cooled to room temperature at 25 ◦C/h.
The material was then hand ground with a mortar and pestle
for 10 min and ball milled (8000M Spex Mixer Mill) using a
mixture of 3 and 5 mm Y-ZrO2 ball milling media in a 1:25

(solid electrolyte: media) mass ratio in a HDPE vial. Due to
the sensitivity of Li2OHCl to moist air, all processes were
completed under argon.

Identification of the crystalline phase for Li2OHCl was
conducted on a PANalytical X’pert Pro Powder Diffractometer
with CuK α radiation (λ = 1.54056 Å). Powder samples
were dispersed on quartz slides and sealed with Kapton R©
films. High-temperature x-ray diffraction (XRD) scans were
conducted with an Anton Paar XRK 900 Hot Stage which
was heated to 200 ◦C at 2 ◦C/min; the temperature was
maintained for 20 min prior to collecting crystallographic data.
Rietveld refinements and analysis of crystallographic data
were completed with HIGHSCORE PLUS, which is a software
package provided through PANanalytical.

Slow-cooled Li2OHCl was cold pressed at 300 MPa in an
airtight cell designed by our group with Al/C blocking elec-
trodes for all electrochemical impedance spectroscopy (EIS)
measurements (Bio-Logic, VSP). EIS measurements were
measured between 1 mHz and 1 MHz with an amplitude of
100.0 mV in a temperature-controlled chamber. For Arrhenius
measurements, the temperature control chamber was ramped
from 25 ◦C to 200 ◦C and allowed to equilibrate for 2 h before
EIS measurements were collected.

III. CRYSTAL STRUCTURE

A. Low-temperature structures of Li2OHCl

1. Static lattice simulations

By static lattice simulations we mean simulations per-
formed by assuming that the atomic positions are time
independent, with no effects of quantum lattice vibrations
taken into account. These results are obtained by optimizing
the total energy with respect to atomic positions and simula-
tion cell parameters within self-consistent density functional
calculations.

One goal of the simulations is to make accurate models
of the available experimental results. Information about the
low-temperature structure of Li2OHCl from experimental
evidence can be summarized as follows. Below temperatures
of approximately 35 ◦C, Schwering et al. [4] reported the
structure of Li2OHCl to be orthorhombic. The analyzed lattice
constants were given as a = 3.8220(1) Å, b = 7.9968(2) Å,
and c = 7.7394(2) Å, and the space group Amm2 (#38)
[22] was suggested. While the fractional coordinates of the
atoms were not reported, the experimental study of the phase
transition indicated the low-temperature phase to be ordered.
The x-ray diffraction pattern of samples of the low-temperature
phase of “fast-cooled” samples were also recently reported
by Hood et al. [1], and analogous results for “slow-cooled”
samples are presented in this work.

From this evidence, we carried out a computational
structure search to determine the ground-state structure of
Li2OHCl. Several candidate structures were optimized using
the density functional theory methods described in Sec. II A.
The candidate structures were based on ordered variations
of the cubic structure found in the literature [3]. As a result
of this computational search, we found the lowest-energy
structure to have a tetragonal lattice characterized by the space
group P 4mm (#99) as shown in Fig. 1(a). (For convenience
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FIG. 1. Ball and stick representations of the computationally
optimized structures of Li2OHCl in the (a) tetragonal structure [space
group P 4mm (#99), rotated by 90 ◦ about the a axis from the standard
orientation] and (b) orthorhombic structure [space group Pmc21

(#26)]. For both structures, green balls represent Cl, red O, blue
H, and silver Li.

in making structural comparisons, we rotated the standard
lattice orientation by 90 ◦ about the a axis.) This ground-state
structure has all of the OH groups oriented along the b

axis and is very closely related to an ordered form of the
high-temperature cubic structure which will be discussed
in Sec. III B. The optimized lattice constants and fractional
atomic coordinates are given in Table I.

The challenge introduced by this DFT ground-state struc-
ture is to reconcile the determined tetragonal structure with
the experimental findings [1,4] of an orthorhombic structure.
One variation of the ground-state structure that could give

TABLE I. DFT ground-state structure of Li2OHCl having tetrag-
onal structure with space group P 4mm (#99), using the nonstandard
coordinates x → x, y → z, and z → −y. The lattice constants
(scaled by 1.02 to correct for the systematic LDA error) are a = c =
3.794 Å and b = 3.578 Å. The columns below list the atomic species,
the multiplicity and Wyckoff label, and the fractional coordinates.

Atom Wyckoff x y z

O 1a 0.000 0.925 0.000
H 1a 0.000 0.654 0.000
Cl 1b 0.500 0.439 0.500
Li 2c 0.500 0.015 0.000

TABLE II. DFT metastable state structure of Li2OHCl having
orthorhombic structure with space group Pmc21 (#26). The lattice
constants (scaled by 1.02 to correct for the systematic LDA error) are
a = 3.831 Å, b = 3.617 Å, and c = 7.985 Å. The columns below
list the atomic species, the multiplicity and Wyckoff label, and the
fractional coordinates.

Atom Wyckoff x y z

O 2a 0.000 −0.024 0.000
H 2a 0.000 0.699 0.000
Cl 2b 0.500 0.500 0.250
Li 2a 0.000 0.001 0.250
Li 2b 0.500 0.086 0.000

rise to the orthorhombic structure is that the OH groups have
a more complex orientational configuration compared with
uniform alignment along the b axis. A structure search found
a candidate orthorhombic structure having a DFT energy of
0.02 eV/FU (eV per formula unit) higher than the ground-state
structure. Other distinct candidate orthorhombic structures
were less stable by at least 0.1 eV/FU. This orthorhombic
structure was found by optimizing the structure obtained by
doubling the c axis of the tetragonal unit cell and coordinating
the OH groups in opposite directions along the b axis. This
structure has the space-group symmetry Pmc21 (#26). A
visualization of this structure is shown in Fig. 1(b) and the
lattice coordinates and fractional coordinates are given in
Table II.

Although this candidate structure can explain the ex-
perimental observation of an orthorhombic unit cell, the
computed lattice constants of a = 3.831 Å, b = 3.617 Å, and
c = 7.985 Å (scaled by 1.02 to account for the systematic
LDA error) are not in good agreement with the x-ray results
measured in this work for the slow-cooled samples, nor the
results reported by Schwering et al. [4], which correspond to
a = 3.8697 Å, b = 3.8220 Å, and c = 7.9968 Å, presumably
measured at room temperature. (Note that we assume that
the mapping of the lattice convention used by Schwering
et al. [4] to our convention corresponds to a → b, b → c,
and c/2 → a). Specifically, a significant discrepancy (of
5%) occurs for the optimized b-axis lattice constant. Similar
difficulties in computing lattice constants associated with OH
bonds using DFT-LDA for structural relaxation have been
reported in the literature [23]. These observations motivated an
extension of our simulations beyond the static lattice treatment.

2. Quasiharmonic simulations

The static lattice simulations described above are based
on a purely classical treatment of the atomic nuclear po-
sitions. More realistically, the quantum mechanical physics
of lattice vibrations can have significant effects on the
structural properties of materials [24]. Within the context of a
canonical ensemble, the appropriate thermodynamic energy
is the Helmholtz free energy F (T ,a,b,c) as a function of
temperature T and volume, which depends on the lattice
parameters a, b, and c. (Note that in the present case, the
experimental evidence suggests that it is sufficient to restrict
consideration to orthorhombic structures, but in principle the
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analysis could be extended to consider variations in the lattice
angles α, β, and γ as well.) It is important to note that
it is the Helmholtz free energy that is appropriate for this
analysis (instead of the Gibbs free energy) because PV is
small (∼10−5 eV) at atmospheric pressures for these systems.

Within the Born-Oppenheimer approximation [25], the
static lattice simulations well approximate the internal energy
of the system due to the static nuclei and the corresponding
total electronic energy USL(a,b,c) for each set of lattice
parameters a, b, and c. In principle, for each set of lattice
parameters a, b, and c, the static lattice internal energy of
a system can have a temperature dependence through its
electronic degrees of freedom. However, for an ordered and
electronically insulating material, it is reasonable to assume
that the static lattice Helmholtz free energy is approximately
temperature independent and dominated by the internal energy
so that

FSL(T ,a,b,c) ≈ USL(a,b,c). (1)

Also within the framework of the Born-Oppenheimer ap-
proximation, the contributions of the lattice vibrations are
energetically additive so that a reasonable approximation to
the Helmholtz free energy can be determined from

FQH(T ,a,b,c) = USL(a,b,c) + Fvib(T ,a,b,c), (2)

where the subscript QH indicates the quasiharmonic approx-
imation [21,26,27] and the vibrational Helmholtz free energy
Fvib(T ,a,b,c) is evaluated at fixed lattice constants a,b,c

using the harmonic approximation. Since we are examining
ordered structures, it is not necessary to include effects of
configurational entropy.

The quasiharmonic approximation [26] is based on the
idea of calculating the vibrational Helmholtz free energy
Fvib(T ,a,b,c) on a grid of lattice constants. For each set of
lattice constants, the harmonic phonon spectrum is determined
in terms of the phonon density of states g(ω,a,b,c):

g(ω,a,b,c) = V

(2π )3

∫
d3q

3N∑
ν=1

δ(ω − ων(q,a,b,c)). (3)

Here, V denotes the volume of the unit cell which contains
N atoms. The integral over the phonon wave vectors q is
taken over the Brillouin zone. For each q, there are 3N normal
mode frequencies ων which contribute to the phonon density
of states. These normal mode frequencies are determined from
the eigenvalues of the dynamical matrix determined from the
harmonic perturbations of the atomic positions τi(R) = τ 0

i +
R + ui(R) for each atom i in each unit cell translated from
the central cell by lattice translation R. Here, τ 0

i denotes the
equilibrium position of the ith atom relative to the origin of
the unit cell and ui(R) denotes its harmonic displacement in
cell R.

Examples of the calculated phonon densities of states for
two different sets of lattice constants a, b, and c are given in
Fig. 2. The two sets of lattice constants were chosen as those
that optimize the Helmholtz free energy at the temperature
T = 61 and 301 K as will be explained later.

FIG. 2. Plots of g(ω,a,b,c) for two different sets of lattice
parameters for the orthorhombic phase of Li2OHCl. The sets of
lattice parameters chosen for these plots correspond to optimal
parameters found in this work. The inset shows the contributions
to g(ω,a,b,c) from the high-frequency contributions on an expanded
scale, corresponding to the stretching of the OH bonds.

For each set of lattice constants, a, b, and c, the static lattice
internal energy corresponds to

USL(a,b,c) ≡ USL
(
a,b,c,

{
τ 0
i

})
. (4)

The Hessian matrix of the static lattice internal energy
corresponds to the “analytic” part of the dynamical matrix
expressed in terms of atoms i and j (with masses Mi and Mj )
in the unit cell and displacement directions α and β [20,24]:

D̃an
iα,jβ(q,a,b,c) = 1√

MiMj

∑
R

eiq·R ∂2USL
(
a,b,c,

{
τ 0
i

})
∂uiα(0)∂ujβ(R)

.

(5)

Here, the summation over R represents the summation over
all lattice translations. The evaluation of the Hessian includes
both contributions from valence electron response and from the
ions (nuclei and frozen core electrons) of the system evaluated
within the QUANTUM ESPRESSO code [10]. For a phonon mode
having wave vector q, it can be assumed that the displacement
can be expressed in terms of a complex amplitude vector
according to

ui(R) = ũi(q)eiq·R. (6)

In terms of these amplitudes, the valence electron response
contributions are evaluated using density functional perturba-
tion theory [19–21]. In ionic materials, such as in this study,
the full dynamical matrix D̃iα,jβ(q,a,b,c) has an additional
“nonanalytic” term representing coupling of the phonon modes
near q ≈ 0 with an electromagnetic field [20,21], which is
also evaluated in the QUANTUM ESPRESSO code [10]. Once the
dynamical matrix is evaluated for each set of lattice parameters,
it can be diagonalized to find the normal mode frequencies
ων(q,a,b,c) and their corresponding amplitudes Aν

iα(q,a,b,c):

∑
jβ

D̃iα,jβ (q)Aν
jβ(q,a,b,c) = ω2

ν(q,a,b,c)Aν
iα(q,a,b,c). (7)
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From the phonon density of states, the vibrational
Helmholtz free energy is given by [24]

Fvib(T ,a,b,c) = kBT

∫ ∞

0
ln

[
2 sinh

(
h̄ω

2kBT

)]

× g(ω,a,b,c) dω, (8)

where kB denotes the Boltzmann constant. In order to ana-
lyze the various contributions, the corresponding vibrational
internal energy is given by

Uvib(T ,a,b,c) = h̄

2

∫ ∞

0
ω coth

(
h̄ω

2kBT

)
g(ω,a,b,c) dω,

(9)

and the vibrational entropy can be determined from

Svib(T ,a,b,c) = Uvib(T ,a,b,c) − Fvib(T ,a,b,c)

T
. (10)

At each temperature T it is possible to minimize the Helmholtz
free energy to determine the optimal lattice parameters
a(T ), b(T ), and c(T ) for each structure

Fmin(T ) = min
(a,b,c)

FQH(T ,a,b,c), (11)

by interpolating the values of FQH(T ,a,b,c) evaluated on the
lattice constant grid.

In practice, for each system, the grid of lattice constants
must be chosen to contain the minimum of the free energy. For
analyzing the tetragonal structure of Li2OHCl, a 4 × 4 × 4
grid was chosen with a uniform grid spacing of approximately
0.095 Å. The range of lattice constants in Å units was 3.720 �
a or c � 4.006, and 3.508 � b � 3.794. For the orthorhombic
structure of Li2OHCl, a 5 × 6 × 5 grid was chosen with
a uniform grid spacing of approximately 0.073 Å. For this
case, the range of lattice constants in Å units was 3.659 �
a � 3.952, 3.466 � b � 3.833, and 7.725 � c � 8.017. For
each grid point of the lattice constants, the static lattice
internal energy USL(a,b,c) was determined by optimizing the
internal atomic coordinates within the self-consistent density
functional formalism. In order to ensure that the optimized
structure corresponded to an equilibrium configuration, it
was helpful to repeat the optimization with initial atomic
coordinates differing slightly from the configurations shown in
Fig. 1 with the use of random noise. It was found that for the
orthorhombic structure, stable structures could be obtained
by adding the noise only along the b axis. With this added
precaution, it was possible to perform the harmonic phonon
calculations at each grid point of the lattice constants without
finding any imaginary (unstable) vibrational modes, indicating
the validity of the quasiharmonic approximation for these
systems and thus determining the phonon density of states
g(ω,a,b,c).

The results of these calculations proved to be interesting in
several aspects. First, in analyzing the optimized Helmholtz
free energies per formula unit for the tetragonal phase
and orthorhombic phase shown in Fig. 3, it is shown that
the tetragonal phase is predicted to be thermodynamically
favorable relative to the orthorhombic phase in the temperature
range from 0 to 425 K. It is important to note the sensitivity
to the crossing point of the free energies in Fig. 3 to a small

FIG. 3. Optimized Helmholtz free energy Fmin (eV/FU) as a
function of temperature T (K) computed for the tetragonal (red line)
and orthorhombic (black line) structures of Li2OHCl. The solid lines
were determined by interpolation of the grid values, while the symbols
represent values of Fmin(T ) recalculated at the minimum lattice
constants for the given temperature. The zero of energy (specifically
for USL) is arbitrary but consistent throughout this paper.

error in the calculation. A relative error of ±0.01 eV shifts
the crossing point of the relative free energies by ∼±100 K.
While there is a large error bar on the transition temperature,
the simulations suggest that the tetragonal phase should be
thermodynamically stable at low temperatures. In fact, to the
best of our knowledge, the tetragonal phase has not been
reported in the experimental literature nor in the experimental
x-ray analyses of this work. Since the tetragonal structure
requires all of the OH groups to be aligned in the same
direction, perhaps there are kinetic reasons which disfavor
the tetragonal structure.

It is also interesting to look at the temperature dependence
of the optimized lattice parameters a(T ), b(T ), and c(T )
for the tetragonal and orthorhombic phases as shown in
Fig. 4. The lattice parameters for the tetragonal phase are
continuous, and show a gentle increase in the lattice parameters
across the temperature range. The lattice parameters for the
orthorhombic phase are also continuous with a more rapid
increase in b(T ) and smaller rapid decrease in a(T ) at T 150 K.
Table III lists some typical values of the low-temperature
and room-temperature optimized lattice parameters for both
the tetragonal and orthorhombic phases. Comparing the
low-temperature results computed within the quasiharmonic
approximation with the corresponding static lattice results, we
see that effects of lattice vibrations are to generally increase
the lattice constants with largest increase occurring along
the b axis which is the axis along which the OH bonds are
aligned in these structures. The simulated lattice constants
for the orthorhombic structure at room temperature in the
quasiharmonic approximation are closer to the experimental
results compared with the static lattice simulations.

To compare the theoretical x-ray diffraction with experi-
ment, the atomic coordinates of orthorhombic structure were
relaxed at the predicted room-temperature lattice constants;
these atomic coordinates were used in a simulation cell with
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FIG. 4. Comparison of each of the lattice parameters as a function
of temperature, calculated by optimizing Fmin(T ) at each temperature
and by multiplying by 1.02 to account for the systematic LDA
error, comparing both the theoretical tetragonal and orthorhombic
structures.

the theoretical corrected lattice parameters from Table III
to produce theoretical x-ray diffraction patterns to compare
with experiment. A comparison is shown in Fig. 5 with the
orthorhombic structure before the quasiharmonic corrections,
the room-temperature x-ray diffraction for the theoretical
quasiharmonic corrected coordinates and lattice parameters
from Table III, theoretical coordinates with experimental
lattice parameters from Table III, and the experimental x-ray
diffraction in this work. It is apparent that the x-ray diffraction
for the theoretical atomic coordinates with experimental
lattice parameters from this work is in good agreement with
the experimental diffraction peaks measured in this work,
while the purely theoretical quasiharmonic peaks are in
reasonable agreement. It is noted that the quasiharmonic
correction does improve the comparison with experiment. Its
biggest effect is to increase the b lattice parameter by 0.1
Å relative to the static lattice value, while the experimental

TABLE III. Summary of low-temperature and room-temperature
lattice parameters (in Å units) for Li2OHCl calculated from the
quasiharmonic approach defined in Eq. (11), scaled by a factor of
1.02 to account for the systematic LDA error. Results for both the
tetragonal (tet) and orthorhombic (ortho) phases are tabulated at low
temperature and at room temperature and compared with static lattice
(SL) results. The simulation results are compared with experiment.

a (Å) b (Å) c (Å)

tet SL 3.79 3.58 3.79
tet at T = 106 K 3.92 3.69 3.92
tet at T = 271 K 3.93 3.71 3.93
ortho SL 3.83 3.62 7.98
ortho at T = 106 K 3.86 3.65 8.02
ortho at T = 271 K 3.86 3.73 8.02
Experimenta 3.8697(1) 3.8220(1) 7.9968(2)
Experimentb 3.8749(8) 3.8257(8) 7.999(1)

aFrom Schwering in Ref. [4], mapping the reported values for the
c/2, a, and b axes into the a, b, and c axes of this work.
bMeasured in this work at T = 294.25 K.

FIG. 5. Comparison of simulated and experimental x-ray diffrac-
tion (λ = 1.54056 Å) patterns for the orthorhombic structure of
Li2OHCl. Black (top) shows the simulated result corresponding to
the static lattice approximation. Red and green curves (upper middle)
show the simulated result corresponding to the quasiharmonic ap-
proximation at 106 and 271 K, respectively. Blue curve (lower middle)
was derived using the lattice parameters measured in this work and
the fractional coordinates of the quasiharmonic simulations at 271 K.
Orange (bottom) curve represents experimental measurements in this
work.

b-axis lattice parameter is 0.2 Å larger than the static lattice
value. The corresponding computed fractional coordinates for
the orthorhombic structure were found to be insensitive to
experiment, with the largest change occurring for the H site
and for one of the Li sites which vary by approximately 0.01
fractional units along the b axis between T = 106 and 271 K.

In order to get more information about these results, it is
helpful to look at separate contributions to the free energy.
Figure 6 shows the static lattice internal energy
USL(a(T ),b(T ),c(T )), the vibrational internal energy
in the quasiharmonic approximation [according to
Eq. (9)] Uvib(T ,a(T ),b(T ),c(T )), and the vibrational
entropy in the quasiharmonic approximation [according
to Eq. (10)] Svib(T ,a(T ),b(T ),c(T )) [as represented by
−T Svib(T ,a(T ),b(T ),c(T )), in parts (a), (b), and (c),
respectively]. In comparing the internal energies USL and
Uvib for the tetragonal and orthorhombic structures as
a function of temperature, it is seen that both of these
increase with increasing T . The static lattice internal energy
USL(a(T ),b(T ),c(T )) differs for the two structures by
0.02 eV or more throughout the temperature range. The
vibrational internal energy Uvib(T ,a(T ),b(T ),c(T )) for
the tetragonal structure is slightly larger than that of the
orthorhombic structure by 0.005 eV or less throughout the
temperature range. The difference in the vibrational entropies
Svib(T ,a(T ),b(T ),c(T )) for the two structures becomes larger
at higher temperatures, with the orthorhombic structure having
higher entropy. The orthorhombic structure has a steeper rise
in its static lattice internal energy but at higher temperatures,
the larger entropy means that eventually the −T S contribution
of the phonon free energy lowers the total free energy of the
orthorhombic structure below that of the tetragonal structure.
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FIG. 6. Plots of thermodynamic quantities for the theoretical tetragonal and orthorhombic structures. Black is orthorhombic and red is
tetragonal for all plots. Part (a) shows USL(a(T ),b(T ),c(T )) determined from the static lattice DFT total energies at the optimized lattice
constants for temperature T . The zero of energy for USL is arbitrary, but consistent throughout this paper. (b) Shows the vibrational internal
energy Uvib(T ,a(T ),b(T ),c(T )). (c) Shows the vibrational entropy contribution in terms of −T Svib(T ,a(T ),b(T ),c(T )).

For example, our calculations find that at T = 300 K,
−T [Svib(ortho) − Svib(tet)] = −0.02 eV. The increase in
entropy for the orthorhombic structure can be attributed to a
shift in the phonon density of states to lower frequencies in
the frequency range of 0 � ω/(2πc) � 1000 cm−1 as shown
in Fig. 2.

Having found a reasonable model for the orthorhombic
phase of Li2OHCl, it is useful to focus on some of the details
of the computational results for that system. One interesting
feature of the computed orthorhombic phase is a predicted
abrupt but continuous change of the b-axis parameter near
T = 150 K as shown in Fig. 4. To investigate this further,
contour plots of the free energy FQH(T ,a,b,c), with the c axis

fixed at the predicted value for that temperature and in the
entire plane of the interpolated results for the a and b axes, are
presented in Fig. 7. The results show that going from low to
high temperature, there is an expansion/elongation of the free
energy minimum at the transition followed by a recentering
and steepening of the minimum.

B. High-temperature structures of Li2OHCl

The phase transition of Li2OHCl has been observed [4] at
temperatures above 35 ◦C, changing between the orthorhombic
structure to cubic structure with heating. Hysteresis has been
observed during the heating and cooling cycles. Evidence from

FIG. 7. Contour plots of the computed Helmholtz free energy F (T ,a,b,c(T )) of the orthorhombic structure for four representative
temperatures T . For each T , the plot spans the full grid of points in the a-b plane at the optimized value of c(T ). The vertical axis corresponds
to the a axis which spans the range 3.659 � a � 3.952 Å, the horizontal to the b axis which spans the range between 3.466 � b � 3.833 Å.
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TABLE IV. Fractional coordinates and site occupancies for the
cubic Pm3̄m (#221) structure of Li2OHCl. The columns below list
the atomic species, the multiplicity and Wyckoff label, the fractional
coordinates, and their occupancy factors as determined by Ref. [3].
The H coordinates were not determined.

Atom Wyckoff x y z occ.

O 1a 0 0 0 1
Cl 1b 1

2
1
2

1
2 1

Li 3d 1
2 0 0 2

3

nuclear magnetic resonance (NMR) analysis [4] is consistent
with the cubic structure being disordered as is consistent
with the structure of the deuterated material, Li2ODCl, which
was analyzed by Eilbracht et al. [3] to have the space group
Pm3̄m (#221). The corresponding atomic positions and their
fractional occupancies are listed in Table IV. The lattice
parameter of cubic Li2OHCl was reported by Schwering et al.
[4] to be a = 3.9103(1) Å. A visualization of the unit cell
indicating the fractional occupancy is shown in Fig. 8(a), while
a model structure based on an optimized 5 × 5 × 5 supercell
is shown in Fig. 8(b).

In order to better understand the disordered system, several
models were investigated. Supercells were prepared with
lithium, oxygen, and chlorine at their ideal positions from
Table IV, choosing two-thirds occupation of the lithium sites
at random. The hydrogen sites were placed randomly on 4π

FIG. 8. (a) Shows a possible structure for a unit cell of cubic
Li2OHCl with shaded white and gray balls indicating the partially
occupied Li sites. (b) Shows an optimized structure for a 5 × 5 × 5
supercell of the disorder structure. The Li, O, H, and Cl sites are
indicated with silver, red, blue, and green balls, respectively.

solid angles corresponding to the surfaces of spheres about
each oxygen site having radii equal to 1 Å, representing the
bond length of OH. These supercells were initialized at the
cubic lattice parameters reported by Schwering et al. [4] and
then all cell dimensions and atomic positions allowed to relax.
This was done for 20 examples of 2 × 2 × 2, 10 examples
of 3 × 3 × 3, 3 examples of 4 × 4 × 4, and 2 examples of
5 × 5 × 5 supercells. A visualization of one of the relaxed
5 × 5 × 5 supercells is shown in Fig. 8(b). All of the relaxed
configurations show deviation from cubic symmetry; one
expects that a typical small piece of disordered material will
produce a noncubic strain. In the limit of large bulk these
strains should average out giving the cubic structure. The
average of the axis lengths and axis angles for the progressively
larger supercells is shown in Figs. 9(a) and 9(b), respectively,
with error bars indicating the standard deviation (as distinct
from the standard deviation of the mean). The results show that
the standard deviation of the results gets smaller as the cell size
increases; this is is indicative of the disordered model going to
cubic in the large supercell limit. The average of the axes for
the 5 × 5 × 5 supercell calculations is taken as the estimate
for the theoretical disordered cubic lattice parameter, which is
3.87 Å compared to the 3.91 Å reported by Schwering et al.
[4].

As a further check on the simulated structure, the diffraction
pattern for the the 5 × 5 × 5 optimized supercell model shown
Fig. 8(b) is compared with simulated x-ray pattern generated
using the lattice parameters given by Schwering et al. [4]
and with the experimental x-ray pattern measured in this
work. Note that the lattice constant measured in this work
is a = 3.9083(1) Å at T = 323.15 K and a = 3.9345(1) Å
at T = 473.15 K which compares well with the value a =
3.9103(1) Å reported by Schwering et al. [4]. The results are
presented in Fig. 10. The agreement between the diffraction
patterns is very good and shows that even with the large atomic
relaxations relative to the ideal structure, the diffraction peaks
are very sharp. In this case, the mobile species, Li+ ions and
H associated with OH groups, slightly perturb the less mobile
diffracting species and have themselves very small diffraction
cross sections.

IV. IONIC CONDUCTIVITY AND MOLECULAR
DYNAMICS SIMULATIONS

The ionic conductivity versus temperature behavior of
samples of Li2OHCl for “slow-cooled” samples prepared in
this study are presented as the red circles shown in Fig. 11.
The results are similar to those presented in Ref. [1] for
fast-cooled samples. The jump by more than a factor of 10 in
the conductivity for temperatures near T ≈ 310 K corresponds
to the orthorhombic ↔ cubic structural change. A similar but
larger conductivity jump for samples of Li2OHCl was reported
by Schwering et al. [4].

Molecular dynamics simulations were carried out to better
understand both the lithium ion diffusion and conductivity and
the structural properties of the cubic phase of Li2OHCl. The
simulations were carried out for two unique starting config-
urations constructed as described in Sec. III B for 3 × 3 × 3
supercells. For these simulations, the cubic lattice parameters
were taken from the experimental parameters [4], reduced
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FIG. 9. Summary of results for optimized models of Li2OHCl in its disordered cubic structures plotted as a function of n used to construct
n × n × n supercells in each case. The average value is indicated with a filled symbol and the error bars in the plots indicate the standard
deviation. (a) 〈�USL〉 denotes the average static lattice internal energy per cubic unit cell of the model configuration relative to the corresponding
internal energy in the tetragonal phase. (b) 〈a〉 denotes the average cubic lattice parameter. (c) 〈α〉 denotes the average lattice angle.

by 2% to approximate the LDA correction. The molecular
dynamics simulations were carried out at constant volume
in the manner described in the Methods section (Sec. II A)
for the target temperatures in the range of T = 300–600 K
which resulted in 14 molecular dynamics samples at computed
temperatures in the range of T = 350–700 K. As discussed
in further detail below, the simulations for one of the initial
configurations configurations was carried out for approxi-
mately 120 ps, while the other configuration was carried out
for approximately 60 ps. The similarity of analyzed results
from the two initial configurations at equivalent temperatures
suggest some degree of sampling convergence. Of course, it
is always the case that the molecular dynamics results would
benefit from longer simulation times. On the other hand, the
analysis shows that during the simulation runs at even for the
lowest-temperature simulations, 354 and 396 K, there are 5 and
17 hopping events, respectively. This indicates the presence of

FIG. 10. X-ray diffraction (λ = 1.54056 Å) results of the cubic
phase of Li2OHCl, comparing simulated and measured intensities as
a function of 2 (deg). The top plot was generated using the lattice
parameters given by Schwering et al. [4] and fractional coordinates
of the ideal disordered lattice. The second plot is the diffraction
pattern generated from the 5 × 5 × 5 optimized supercell model
shown Fig. 8(b) and the bottom plot is an experimental x-ray pattern
measured at T = 323.15 K for a slow-cooled sample synthesized in
this work.

low-energy activation barriers for hopping in this disordered
system. These events were counted by assigning each Li to
its nearest lattice site according to the simulation data of each
run and then counting the number of discrete site transitions
during the simulation.

Based on Kubo’s analysis of the fluctuation-dissipation
theorem in the context of evaluating transport properties of
materials, the conductivity σ of a system is related to the
averaged correlation function of current density J(t) of the
system [28,29]

σ = V

3kBT

∫ ∞

0
〈J(t) · J(0)〉dt. (12)

In this expression, V represents the volume of the simulation
cell, kB is the Boltzmann constant, and T is the temperature.
The angular brackets indicate ensemble averaging over initial
configurations and the evaluation averages the diagonal of the
conductivity tensor. For a system having ions of charge eQi

FIG. 11. Red circles correspond to the measured relationship
between ionic conductivity σ (S/cm) and temperature T (in K)
for slow-cooled samples of Li2OHCl plotted as log10(T σ ) versus
1000/T . The black squares correspond to the simulated conductivity
inferred from tracer diffusion values according to Eq. (20) in terms
of log10(T σHr ) versus 1000/T .
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and instantaneous particle velocities Ṙi(t), the current density
is given by

J(t) = e

V

N∑
i=1

QiṘi(t), (13)

where the summation over particles i includes all N ions in
the simulation cell. By integrating Eq. (12) over time, the
conductivity can be expressed in terms of the instantaneous
particle positions Ri(t) in the form [29,30]

σ = e2

6V kBT
lim
t→∞

1

t
〈|p(t)|2〉, (14)

where the charge moment vector is given by

p(t) ≡
N∑

i=1

Qi[Ri(t) − Ri(0)]. (15)

Here, the angular brackets indicate ensemble averaging over
initial configurations. In practice, it is expected that only the
motions of the Li ions (with charge eQLi) make significant
contributions to the current density, while the current density
contributions from the other ions of the system are expected
to average to 0. Including only the Li ion contributions to the
squared moment vector using Li ion labels (i = 1,2, . . . ,M),
we can approximate

|p(t)|2 ≈ Q2
Li[�self (t) + �cross(t)], (16)

where

�self (t) ≡
M∑
i=1

|[Ri(t) − Ri(0)]|2 (17)

and

�cross(t) ≡
M∑
i=1

M∑
j �=i=1

[Ri(t) − Ri(0)] · [Rj (t) − Rj (0)].

(18)

The independent ion contribution 〈�self (t)〉 determines the
tracer diffusion coefficient D∗ according to [29]

D∗ = 1

6M
lim
t→∞

1

t
〈�self (t)〉. (19)

In practice, D∗ is estimated from linear fits of computed values
of �self (t) or, equivalently, to the mean-squared displacements
(MSD) in the molecular dynamics simulations. The tracer
diffusion coefficient D∗ can also be measured experimentally
[31–33]. In order to relate the Li ion tracer diffusion to the Li
ion conductivity, it is convenient to define [29]

σ = M

V

e2Q2
LiD

∗

kBT Hr

. (20)

Here, the Haven ratio (Hr ) [31,34] is a measure of the
correlation of the conducting ions which also measures the
discrepancy between the measured ionic conductivity and
the one that would be estimated from the tracer diffusion
coefficient used in the Nernst-Einstein relation. If the long
time limit of the ensemble average of the ion cross correlation
term in the squared charge moment vector 〈�cross(t)〉 is zero,

Hr = 1. The molecular dynamics runs in this study were
analyzed for their tracer diffusion coefficients D∗(T ) and using
Eq. (20) assuming Hr = 1. The results are plotted together
with the experimental conductivity in terms of log10(T σ ) in
Fig. 11. In evaluating Eq. (20), we have assumed that QLi = 1
which is consistent with the calculated Born effective charge
[20] on a Li site.

The comparison in Fig. 11 between the calculated results
from calculated tracer diffusion coefficients and the experi-
mental measurements of ionic conductivity suggest that this
system has a very large value of the Haven ratio Hr � 1.
As mentioned above, the molecular dynamics simulations
may have some statistical errors, particularly at the lower
temperatures. However, our analysis suggests that longer
simulation times would not change the qualitative evidence for
the large Haven ratio. The results also suggest that the Haven
ratio is temperature dependent, varying between Hr (T =
470 K) ≈ 1 × 102 and Hr (T = 310 K) ≈ 2 × 105. According
to the analysis derived from the Kubo formalism, we see
that in order to achieve Hr > 1 the long time ensemble
average of 〈�cross(t)〉 must be less than zero, which can occur
when correlated ions hop in opposite directions. Analyzing
our molecular dynamics simulations at the lower-temperature
runs, we see evidence of 〈�cross(t)〉 < 0, however, we do
not have enough statistics within the current simulations to
make a quantitative analysis of this term. It is documented
[35] that while the independent ion contribution 〈�self (t)〉 is
accessible within molecular dynamics simulations, the ion pair
correlation contribution 〈�cross(t)〉 is very difficult to converge.
Typically, Haven ratios for lattice systems are less than 1
[29]. A few recent reports of computed Haven ratios in other
electrolytes find Hr < 1 [36,37]. On the other hand, there have
been a few reports of large Haven ratios for proton diffusion
[38] and for simulations of Ag migration in phases of AgI [39].
In both of these cases, correlated motions of the active ion
could be proposed. In cubic Li2OHCl, we expect that the Li
ion motions are correlated through their interaction with the
neighboring OH orientations. For example, we find that there
seems to be a preference for the OH groups to be oriented
toward the Li vacancy sites, as discussed further below.

The diffusion coefficient and conductivity are temperature
dependent. It is often the case that the tracer diffusion coeffi-
cient has an Arrhenius form for the temperature dependence:

D∗(T ) = D∗
0e

−Ea/(kBT ), (21)

where Ea measures the activation energy for the process.
Fitting the simulated tracer diffusion results to Eq. (21), we es-
timate Etracer

a = 0.12 ± 0.02 eV. Fitting the measured log(T σ )
versus 1/T results in the temperature range 330–500 K,
we estimate that the corresponding conductivity activation
energy for the cubic phase is Eσ

a = 0.70 ± 0.02 eV. A closer
examination of the measured log(T σ ) plots shows a small
deviation from pure Arrhenius behavior similar to a system
reported in the literature which was modeled as having
a distribution of activation barriers due to configurational
disorder [40]. For cubic Li2OHCl, due to the disorder in Li ion
sites and OH orientations, it seems reasonable that there would
be a distribution of local activation barriers for site hopping.
The large difference between the calculated Etracer

a and Eσ
a
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FIG. 12. Plots of the probability densities for OH angles A(θ,φ) at three representative temperatures evaluated from histograms of the
molecular dynamics simulations.

implies that the mechanisms involved in the two processes are
quite different, as is consistent with the notion that the Li ion
motions are correlated during conductivity measurements.

One important characteristic of the cubic structure of
Li2OHCl compared with the orthorhombic phase is the
variation in the OH bond directions. Our analysis of the
quantum effects of H from the quasiharmonic treatment of
lattice vibrations suggests that the rotations of OH bonds
may have significant quantum contributions, which is beyond
the purview of this study. However, the molecular dynamics
simulations do provide a classical treatment of the OH
orientations within the various ensembles studied as a function
of temperature. For one of the prepared 3 × 3 × 3 supercells
of the cubic structure and a set of simulations at three
representative temperatures, the atomic configurations at each
time step were used to make histograms of the OH bond angles,
A(θ,φ), in terms of θ , measured with respect to the lattice c
axis, and φ, measured with respect to the lattice a axis. In order
to interpret A(θ,φ) as a probability density of finding the OH
bonds at each θ and φ orientation, it has been normalized over
the unit sphere. In Fig. 12, plots of A(θ,φ) are presented, in
terms of their projection onto the unit sphere, for simulations
at T = 385, 550, and 700 K in Figs. 12(a), 12(b), and 12(c),
respectively. In principle, these plots should exhibit the cubic
symmetry of the system in the ergodic limit of the simula-
tion. For the lowest-temperature simulation of T = 385 K,
we expect the asymmetry shown in the plot is due to the fact
that the system is moving more slowly and sampling fewer
configurations. The results for A(θ,φ) evaluated at T = 385
and at 550 K suggest that OH bonds are equally likely to be
oriented along the 〈100〉 and 〈110〉 directions. At the highest
temperature analyzed, the probability density is more diffuse,
but suggests that the OH bonds are likely to be concentrated
within {110} planes; there is a minimum probability of the
bond to oriented along the 〈111〉 directions.

Comparing the structural diagrams for the tetragonal and
orthorhombic phases (Fig. 1) and the cubic phase (Fig. 8), it
is apparent that the orientation of the OH bonds in Li2OHCl
affects the Li ion positions. One way to visualize the motion
of the Li ions and the H orientations is to construct a
time superposed structural diagram as shown in Fig. 13.
These figures were constructed from a molecular dynamics
simulation at T = 640 K by keeping the Cl and O sites at their
initial positions while snapshots of the Li and H positions were
superposed for time intervals of 15 fs during 3.5 ps. Figure 13

shows this time superposed diagram from two vantage points:
the first in Fig. 13(a) shows the entire simulation cell, and
the second in Fig. 13(b) shows the slice made by the black
rectangular box in Fig. 13(a) turned about the a axis to face
the viewer. In both Figs. 13(a) and 13(b), the black oval
encloses a lithium hopping event. The hopping event observed
is consistent with the direct site hopping mechanism that was
proposed by Li, Zhou, et al. [2] in their study of similar
systems. While in this time superposed diagram, the time
sequence of motions is lost, the concentration of hydrogen
positions (blue) near the sites corresponding to Li ion vacancies
(represented by black boxes) shown in Fig. 13(b) suggests
correlation between the two. The time sequence arrows in
the diagram also lend further support to the notion that OH
orientations act to “gate” the Li ion hops.

In order to get further insight into the Li ion dynamics
in the cubic phase of Li2OHCl, it is convenient to define a
quantitative parameter to gain insight into the time dependence
of the occupation of the available Li sites. In the structure
section, it was shown how the Li site disorder implies
the lithiums being randomly distributed in space across the
available sites, giving a 2

3 spatial average of the lithium site
occupancy. For each site i, it is convenient to define an average
occupancy parameter:

〈Si(t)〉time ≡ 1

t

∫ t

0
Si(t

′)dt ′, (22)

where

Si(t) ≡
{

1 if site i is occupied at time t,

0 if site i is not occupied at time t .
(23)

For this purpose, each Li was assigned to the closest lattice
site. In time, as the Li ion hops between all sites with equal
probability, we expect that the asymptotic value of the average
occupancy parameter is

lim
t→∞(〈Si(t)〉time) = 2

3 . (24)

In order to monitor the Li ion hopping as a function of time t ,
it is convenient to define the following ergodicity measure:

Em(t) = 〈∣∣ 2
3 − 〈Si(t)〉time

∣∣〉
sites. (25)

For our system, initialized with random occupation of the
fractionally occupied Li sites, Em(t = 0) = 4

9 . As the sim-
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FIG. 13. Time superposed structural diagram of molecular dynamics simulation at T = 640 K using the same ball conventions as used in
Fig. 8. Cl and O sites are represented at their initial positions and no OH bonds are drawn. Small black boxes indicate Li vacancy positions.
Snapshots of the Li and H positions at 15-fs time intervals within the 3.5-ps simulations are superposed in the diagram. A black oval encloses
Li site hops which have been completed during the simulation. The curved black arrows indicate the time sequence of the Li motion with the
arrow tip corresponding to the latest time. The curved yellow arrows similarly indicate the time sequence of the H motions. (a) Shows the entire
simulation cell projected on to the a-c plane. (b) Shows a slice of the simulation indicated by the black rectangle in (a), projected onto the a-b
plane.

ulation proceeds with Li hopping events, we expect that
Em(t) will decrease in time. Because of the asymptotic
value of the average occupancy parameter noted in Eq. (24),
the asymptotic value of the ergodicity measure must be
Em(t → ∞) = 0. The behavior of Em(t) for the molecular
dynamics simulations gives information about the Li ion
hopping events and a measure of their ergodicity, as illustrated
in Fig. 14 for the molecular dynamics simulations with two
initial configurations. For our simulations, Em(t) does decrease
with time, but within the simulation times of the current work,
the asymptotic limit has not been reached even at the highest
simulation temperatures. The values of Em(t) were averaged
over initial times, so that the early times in the plot have
better statistics. The results show that the higher-temperature
simulations have increased ion hopping as expected, but the
lower-temperature simulations need much longer times to
achieve equivalent values of Em(t).

V. SUMMARY AND CONCLUSIONS

In this work, the structural and electrolyte properties of
Li2OHCl are examined. By comparing theoretical results
to slow-cooled pristine samples of Li2OHCl, a reasonable
model of the low-temperature orthorhombic structure is found.
The quasiharmonic approximation is found to improve the
agreement of the simulations with experiment. A theoretical
ground-state tetragonal structure is also found that has not been
experimentally observed.

Structural calculations of the disordered cubic phase are
in good agreement with experiment, particularly for large
(5 × 5 × 5) supercells. Moreover, the comparison of models of
the ordered structures to the cubic structure can be described
in terms of the availability of new sites for Li ion motion
related to the OH bond directions. This is consistent to the
abrupt change in ionic conductivity observed at the phase
transition. Molecular dynamics simulations of tracer diffusion

FIG. 14. (a), (b) Show plots of Em(t) as defined in Eq. (25) for two different initial configurations of cubic Li2OHCl modeled in 3 × 3 × 3
simulation cells. The legends list the average temperature of each simulation.
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in the cubic phase are used to estimate ionic conductivity
assuming no correlations among the mobile ion motions. The
results show a large discrepancy with the experimental ionic
conductivity measurement. The discrepancy gives evidence of
a large temperature-dependent Haven ratio, indicating highly
correlated Li ion motion. Molecular dynamics simulations also
give evidence of a relationship between the OH orientations
toward vacant Li sites. The OH bond orientations are suggested
to participate in a gating mechanism for Li ion conduction. For
analyzing the results, an ergodicity measure has been defined
which goes to zero when all of the available Li sites have
achieved their average occupation.

The combined experimental and computational study of
well-formed Li2OHCl structures should help inform the fur-
ther development of this material as an electrolyte for all solid-
state Li ion batteries as discussed in the recent literature [1,2].
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