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The projector augmented wave (PAW) formalism developed by Blöchl [Phys. Rev. B 50 (1994) 17953] is
an accurate and efficient pseudopotential-like scheme for electronic structure calculations within density
functional theory and is now implemented in several electronic structure codes. Some of these codes
use an implementation of the formalism developed by Kresse et al. [Phys. Rev. B 59 (1999) 1758] which
differs slightly from the original Blöchl formalism and which can lead to different electronic structure
results. In this paper, we analyze and illustrate the difference between the Blöchl and Kresse PAW
formulations.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

The tools available for detailed first-principles studies of materi-
als have benefited enormously from the development of several in-
ternational collaborations engaged in developing open source elec-
tronic structure code packages. For example, the WIEN2k [1] pack-
age is based on linearized augmented plane wave (LAPW) method
[2], while ABINIT [3] and PWSCF [4] are based on several differ-
ent pseudopotential methods. These collaborations have resulted
in well-designed shared codes which incorporate many of the best
“state of the art” methodologies. Validation is an important aspect
of code development and most of the collaboration teams have in-
corporated internal tests as part of their development procedures.
The availability of several independently developed codes, provides
the opportunity for further testing and validation.

The present paper deals with the identification and analysis of
a particular discrepancy between two independent codes in their
implementation the projector augmented wave (PAW) method de-
veloped by Blöchl [5]. The PAW method has been demonstrated to
be a particularly efficient and accurate tool for electronic structure
calculations, combining the numerical advantages of pseudopoten-
tial techniques while retaining the physics of all-electron methods,
including representing the correct nodal behavior of the valence-
electron wave functions and the inclusion of upper core states in
addition to valence states in the self-consistent iterations. We show
that the discrepancy can be traced to a slight formalism difference
in the two implementations. Since one of the codes (ABINIT) is
widely used and because our analysis may be relevant to some of
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Table 1
PAW parameters used in calculations: the pseudopotential radius ra

c (in bohr), list
of shell designations n1l1(rm1 )n2l2(rm2 ) . . . of basis and projector functions used in
the calculation and corresponding radii rmi (in bohr) used to match the all-electron
and pseudo radial wavefunctions. The symbol ε indicates the use of unbound basis
functions with energies ε = 2.0,0.0, and 3.0 Ry for F, Si, and Cu, respectively.

Atom ra
c {nili(rmi )}

Li 1.7 1s(1.4) 2s(1.7) 2p(1.7)
F 1.5 2s(1.5) εs(1.5) 2p(1.5) εp(1.5)
Si (valence) 2.0 3s(2.0) 3p(2.0) εd(2.0)
Si (semicore) 1.5 2s(1.5) 3s(1.5) 2p(1.5) 3p(1.5)
Cu 2.3 3s(1.5) 4s(2.2) 3p(1.5) 4p(2.2)

3d(1.5) εd(2.2)

the other codes which have adopted the PAW method, we thought
it useful to publish our findings.

All calculations were performed within the framework of den-
sity functional theory [6,7] using exchange correlation functionals
with either the local density approximation (LDA) [8], or the gen-
eralized gradient approximation (GGA) [9]. The independent codes
used for the comparison of PAW implementations are PWPAW [10]
and ABINIT [3] using the same PAW basis and projector functions
generated using the ATOMPAW code [11] and the atompaw2abinit
converter program available at the ABINIT website. These codes
have been compared with each other and with other independent
codes, and for most materials the agreement is excellent. How-
ever, three example materials serve to illustrate the discrepancy.
These materials use the PAW basis and projector function parame-
ters listed in Table 1.

The first example is the highly ionic material LiF in the rock-salt
structure. Fig. 1 shows plots of electronic energy versus cubic lat-
tice parameter a, comparing the PAW results from both PAW codes
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Fig. 1. Plots of electronic energy (E) of LiF as a function of lattice constant (a) de-
termined from the WIEN2k [1], PWPAW [10], and ABINIT [3] codes, comparing LDA
[8] (upper plot) and GGA [9] (lower plot) results.

Fig. 2. Plot of the electronic energy (E) of Si as a function of lattice constant (a)
calculated using the GGA functional, comparing results using 3 codes and 2 different
PAW basis and projector sets as explained in Table 1 and in the text.

with the all-electron results generated by the WIEN2k code. In
general there is excellent agreement among all of the results, with
the obvious exception of the ABINIT results for the GGA functional,
where the equilibrium lattice constant is found to be 0.006 nm
larger than that of the others.

The second example is Si in the diamond structure is shown
in Fig. 2. In this case, only the GGA results are presented for two
different basis and projector sets – “valence” and “semicore” de-
fined in Table 1. We see that while the “valence” basis set gives
results in good agreement between WIEN2k, PWPAW, and ABINIT,
the “semicore” basis set used with the ABINIT code results in a dis-
crepancy compared the other results. While this discrepancy is not
as large as the discrepancy for the GGA functional results of LiF, it
is larger than it should be if the codes were performing the same
calculations with the same input parameters, as designed.

Finally, in Fig. 3 we show binding energy curves for Cu in
the fcc structure, comparing LDA and GGA results. In this case,
the PAW calculations used basis and projector functions including
semicore states in order to accurately represent the 3d contribu-
tions. The results show that there is a small discrepancy between
the calculations using the LDA functional and a much larger dis-
crepancy for ABINIT code results using the GGA functional.
Fig. 3. Plots of electronic energy (E) of Cu as a function of lattice constant (a) com-
paring results obtained the LDA and GGA functionals and 3 computer codes.

These three examples show extreme examples of the discrep-
ancies between the two codes. By contrast, there are many other
materials which show excellent agreement between the two codes.
As we will show, the origin of the discrepancies turns out to be
due to a subtle difference in formalisms.

In Section 2 we discuss the PAW implementations used by the
two codes and identify the terms which cause the discrepancies.
In Section 3 we illustrate the behaviors of the problematic terms.
Section 4 summarizes the results and discusses several approaches
to avoiding this difficulty.

2. Formalism

In addition to the original paper by Blöchl [5], there are now
several paper which detail the PAW formalism [10–17]. The basic
idea can be summarized in terms of the PAW expression of the
valence electron energy of the system as a combination of smooth
contributions evaluated over all space plus a sum of atom-centered
terms which contribute within “augmentation” spheres, of radii ra

c
about each atomic site a:

Evale = Ẽvale︸︷︷︸
pseudo-energy

+
∑

a

(
Ea

vale − Ẽa
vale

)︸ ︷︷ ︸
atom-centered corrections

. (1)

In principle, the pseudo-energy contributions within each augmen-
tation sphere are canceled out of the expression by the atom-
centered pseudo-energy Ẽa

vale and replaced by the atom-centered
full nodal valence energy Ea

vale. Provided that the cancellation is
well approximated, there is considerable freedom in the formula-
tion of pseudofunctions within the augmentation spheres. Conse-
quently, there are some variations in the detailed formulations of
the PAW method described in the literature. The ABINIT formula-
tion [17] follows that of Kresse [14] which, apart from regrouping
of the terms in the expressions, differs from the original formu-
lation of Blöchl [5,15] in the treatment of the pseudo exchange–
correlation contributions. In particular, denoting by n(r) and nc(r)
the valence and core electron fully nodal charge densities and by
ñ(r) and ñc(r) the corresponding valence and core electron pseu-
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dodensities, Blöchl’s form of the exchange–correlation energies can
be expressed in terms of the functional dependencies:

EB
xc = Exc[ñ + ñc] +

∑
a

(
Ea

xc

[
na + na

c

] − Ea
xc

[
ña + ña

c

])
. (2)

Including the smooth core pseudodensities in the evaluation of the
functional follows the notion of the non-linear core correction in-
troduced by Louie et al. [18] which has been demonstrated to work
well for norm-conserving pseudopotentials and also works well
for the PAW formalism. On the other hand Kresse’s version of the
exchange–correlation energies has the form

EK
xc = Exc[ñ + ñc + n̂] +

∑
a

(
Ea

xc

[
na + na

c

] − Ea
xc

[
ña + ña

c + n̂a]).
(3)

Here the extra term n̂(r) is the valence compensation charge den-
sity, which can be defined1 in the notation of Refs. [14] and [17]
to be

n̂(r) =
∑

ai jLM

ρa
i j Q̂ aLM

ij (r), (4)

where a is the atomic site index, i j are basis and projector function
indices and LM are spherical harmonic indices. The coefficients ρa

i j

are determined from the Bloch pseudowavefunctions Ψ̃nk(r) and
the projector functions p̃a

i (r) by the expression

ρa
i j =

∑
nk

fnk
〈
Ψ̃nk

∣∣p̃a
i

〉〈
p̃a

j

∣∣Ψ̃nk
〉
, (5)

where fnk represents the sampling weight and occupancy of the
Bloch state. The compensation spatial functions Q̂ aLM

ij (r) are local-
ized within the augmentation sphere of atom a and have the form

Q̂ aLM
ij (r) ≡ qLM

ij gL
(∣∣r − Ra

∣∣)Y LM
(
̂r − Ra

)
, (6)

where Y LM(̂r − Ra) denotes a spherical harmonic function, qLM
ij is

a coefficient representing the LMth moment associated with the
pair of basis functions i and j, and gL(|r − Ra|) denotes a radial
shape function with the properties

gL(r) ≡ 0 for r � ra
c and

ra
c∫

0

dr r2+L gL(r) = 1. (7)

The purpose of the compensation charge density n̂(r) is to add the
correct amount of charge moments to the valence pseudodensity

ñ(r) ≡
∑
nk

fnk
∣∣Ψ̃nk(r)

∣∣2
(8)

so that outside the augmentation region of all the atoms, the
Coulomb (or Hartree) potential for the sum of the valence pseudo
and compensation charge densities ñ(r) + n̂(r) is the same as that
for the fully nodal valence electron density n(r):

V H (r) =
∫

d3r′ ñ(r′) + n̂(r′)
|r − r′|

|r−Ra|>ra
c=
∫

d3r′ n(r′)
|r − r′| . (9)

While the inclusion of compensation charge density n̂(r) is es-
sential to correctly representing the Coulombic interactions of the
system, it is not obvious that n̂(r) has any physical meaning in the
argument of exchange–correlation functionals which are based on

1 In Ref. [5] and several others, the definition of the compensation charge density
n̂(r) includes nuclear and core electron contributions which are NOT included in the
present formulation, but are treated separately.
Fig. 4. Plots of radial charge densities (top panel), Hartree potentials (second panel),
and GGA exchange–correlation potentials (lower panel) for Li with ra

c = 1.7 bohr.
The compensation charge density n̂ is constructed using the squared sinc function
defined in Eq. (10).

either a local density approximation (LDA) [8] or a generalized gra-
dient approximation (GGA) [9]. For these functionals, at any given
spatial point r, the exchange–correlation contribution depends on
the density (and its gradient in the case of GGA) at that point.
Formally, all pseudofunction contributions within the augmenta-
tion sphere, cancel out of the energy and Hamiltonian expressions,
so that in general, the presence of the compensation charge in the
exchange–correlation functional the expression should do no harm.
However, in some cases, such as those presented in the introduc-
tion, inclusion of n̂(r) in the argument of the pseudo exchange–
correlation functional can introduce non-canceling errors as will
be demonstrated in more detail in Section 3.

3. Examples

In order to visualize the effects of the two formulations of PAW
exchange–correlation contributions, we first consider the example
of Li with the GGA functional and the PAW parameters listed in
Table 1. In order to describe correct behavior in the highly ionic
compound of LiF, all 3 electrons of Li are treated as valence elec-
trons (nc ≡ 0 and ñc ≡ 0). Fig. 4 shows plots of the all-electron
density n(r), the pseudodensity ñ(r), and the sum of the pseudo-
density and the compensation charge density ñ(r) + n̂(r). In these
calculations, the squared sinc function was used for the compen-
sation charge shape:

gL(r) =
{

NLrL(
sin(πr/ra

c )

πr/ra
c

)2 for r � ra
c ,

0 for r > ra
c ,

(10)

where NL is a normalization constant. The middle panel of Fig. 4
shows the Hartree potentials which results from these charges.
The Hartree potential for the sum of the pseudodensity and the
compensation charge density smoothly converges to the correct



M. Torrent et al. / Computer Physics Communications 181 (2010) 1862–1867 1865
Fig. 5. Plots of radial charge densities (top panel), Hartree potentials (middle panel)
and GGA exchange–correlation potentials (lower panel) for Si with ra

c = 1.5 bohr.
The compensation charge density n̂ is constructed using the squared sinc function
defined in Eq. (10).

all-electron valence Hartree potential as r → ra
c . The bottom panel

of Fig. 4 shows the GGA exchange–correlation potential corre-
sponding to the various charge densities. This plot shows that
for the Blöchl formulation, μxc[ñ] smoothly converges to the all-
electron exchange–correlation function μxc[n]. On the other hand,
for the Kresse formulation, μxc[ñ + n̂] shows unphysical behavior
near r � ra

c due to a significant discontinuity in the curvature of
[ñ + n̂] in that region.

We also constructed a similar comparison of the densities and
potentials for Si using the semicore configuration listed in Table 1
and the GGA exchange–correlation functional. The semicore con-
figuration is necessary for accurately representing ionic materials
such as SiO2, but should also be able to accurately represent pure
Si. The squared sinc function (10) was again used for the compen-
sation charge shape. The results are shown in Fig. 5. In this case,
there is a nontrivial core electron contribution nc(r), however be-
cause it is so localized within the augmentation radius, ñc(r) ≈ 0.
On the other hand, the compensation charge density n̂ does con-
tribute substantially to the pseudo exchange–correlation potential,
and again causes a discontinuity in the vicinity of ra

c .
An obvious question at this point is whether there might be a

better choice of the compensation charge shape. In fact, the orig-
inal paper describing their modified PAW formalism, Kresse et al.
[14] introduced a shape based on a linear combination of Bessel
functions similar to that used in RRKJ [19] pseudopotentials. A spe-
cific form can be written:

gB
L (r) =

{
NL[ jL(

xL1r
rcomp

) − xL1 j′L(xL1)

xL2 j′L(xL2)
jL(

xL2r
rcomp

)] for r � rcomp,

0 for r > rcomp,
(11)

where xLi denotes the ith zero of the spherical Bessel function
jL(x) and NL denotes a normalization constant. As for the squared
sinc function, this Bessel shape function is designed to vanish
Fig. 6. GGA exchange–correlation potentials for Cu using ra
c = 2.3 bohr, compar-

ing functionals of all-electron density (nc + n), Blöchl’s pseudodensity (ñc + ñ), and
Kresse’s pseudodensity (ñc + ñ + n̂) using the squared sinc compensation charge
shape, and (ñc + ñ + n̂B) using the Bessel function compensation charge shape.

quadratically at the chosen radius. Kresse et al. recommend that
the radius parameter be chosen such that ra

c /rcomp ≈ 1.2. Fig. 6
compares the GGA exchange–correlation functionals of Cu con-
structed using Blöchl’s form and Kresse’s form with two different
compensation charge shapes both generated using the ATOMPAW
code. In this example, we see that for using the Kresse form of
the exchange–correlation treatment, the Bessel shape function for
the compensation charge is numerically much better behaved than
is the squared sinc function. However, it is again clear that the
Blöchl form of the exchange–correlation treatment converges most
smoothly to the all-electron function in the neighborhood of the
augmentation sphere boundary.

These examples of discontinuous behavior of pseudo exchange–
correlation potentials are obviously extreme cases, chosen to il-
lustrate the problem clearly. In the examples shown in Figs. 4,
5, and 6 it is apparent that the discontinuities in the pseudo
exchange–correlation potentials near ra

c seem to be the likely cause
of the discrepant structural results presented in Section 1. The
pseudo exchange–correlation energy and potential contributions
and related functions2 within the augmentation sphere are de-
signed to cancel out of the calculation. In practice, in each pair of
canceling terms, one term is evaluated in Fourier space while the
other is evaluated on a radial grid. The cancellation of these terms
is only possible if their integrand functions are numerically well-
behaved. Furthermore, the one-center terms defined in Eq. (1) are
evaluated on radial grids centered on each atom. Their accurate
evaluation relies on the assumption that the difference between
the all-electron and pseudopotential contributions smoothly vanish
in the vicinity of ra

c , which is violated for the exchange–correlation
contributions in these examples.

In order to verify our analysis of this problem we have written
modified versions of the ATOMPAW, ABINIT, and PWPAW codes,
allowing for the treatment of both the Blöchl and Kresse formu-
lations of exchange–correlation energies (Eqs. (2) and (3)) and the
corresponding Hamiltonian terms within each of the codes. Fig. 7
shows the results for Cu using the exchange–correlation functional,
comparing both the Blöchl and Kresse forms using both of the
modified codes. Here we see that all results using the Blöchl for-
malism are in excellent numerical agreement. The results from the
two codes using the Kresse form with the squared sinc function
have a relatively small numerical discrepancy with each other, un-
doubtedly due to slightly different treatments of the discontinuous
exchange–correlation functional. The ABINIT code is also able to
use the Bessel shape compensation charge (Eq. (11)) and those re-
sults are also shown in Fig. 7. In this case, both the Kresse and

2 Because they are constructed by unscreening smooth local pseudopotentials, the
local ionic potentials (va

H [ñZc ](r) defined in Ref. [14] or v̄a(r) defined in Ref. [5]) are
also affected by discontinuities in the pseudo exchange–correlation potential.
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Fig. 7. Comparison of binding energy curves for Cu using the GGA exchange–
correlation functional using the Blöchl (B) and Kresse (K) formalisms and the mod-
ified PWPAW and ABINIT codes. Also shown are results using the Bessel compensa-
tion charge shape (Eq. (11)) in both schemes using the ABINIT code.

Table 2
Ground state parameters for LiF, Si, and Cu determined from fit of calculations to
the Murnaghan [20] equation of state, listing the equilibrium lattice constant a0

(nm) and bulk modulus B (GPa). The notations (B) and (K) denote the Blöchl and
Kresse formalisms for the exchange–correlation functionals respectively. For Si (v)
and (s) denote the valence and semicore basis sets respectively detailed in Table 1.
Most calculations used the squared sinc form (Eq. (10)) for the compensation charge
shape; two calculations for Cu were performed using the Bessel function compen-
sation charge shape (Eq. (11)) with the notation [Bes].

Method LDA GGA

a0 B a0 B

LiF

WIEN2k 0.391 87 0.407 66
PWPAW (B) 0.392 85 0.408 66
ABINIT (K) 0.392 85 0.414 66

Si

WIEN2k 0.547 87
PWPAW (B) (v) 0.547 89
ABINIT (K) (v) 0.547 88
PWPAW (B) (s) 0.547 88
ABINIT (K) (s) 0.549 87

Cu

WIEN2k 0.355 170 0.366 130
PWPAW (B) 0.356 160 0.367 120
ABINIT (B) 0.356 160 0.367 120
ABINIT (B) [Bes] 0.367 120
ABINIT (K) [Bes] 0.368 120
PWPAW (K) 0.375 110
ABINIT (K) 0.357 160 0.374 110

Blöchl forms are in good agreement with each other and with the
results of the Blöchl form using the squared sinc function.

Table 2 summaries the numerical results of all of the test cases
considered in this work. The equilibrium lattice constants (a0) and
bulk moduli (B) were obtained by fitting the binding energy re-
sults to the Murnaghan equation of state [20].

4. Summary and conclusions

In this work, we have demonstrated that the original Blöchl
PAW formalism for the exchange–correlation contributions (2)
avoids numerical difficulties that can occur with the Kresse for-
mulation (3). In order to clarify the issue, we have chosen extreme
examples of the problem. From these examples, it is apparent that
the origin of the problem is due to the fact that the exchange–
correlation functions are very sensitive to the local shape of the
density. Since these functionals were designed [8,9] to represent
physical densities it is perhaps not surprising that the arbitrary
shape of the valence compensation charge can cause spurious
exchange–correlation contributions particularly when it is sig-
nificantly larger than the physical density. We expect that this
Fig. 8. Comparison of the Fourier transforms of various radial shape functions gL(r)
for L = 0 using ra

c = 1.7 bohr appropriate for Li PAW functions as described in Ta-
ble 1.

problem will become even more serious as more complicated func-
tionals, which can depend on higher order density derivatives are
developed [21].

In practice, the error we have identified can be ameliorated by
choosing other radial shape functions than the squared sinc func-
tion defined in Eq. (10). The example for Cu using the Bessel func-
tion shape compensation charge defined in Eq. (11) illustrates this
effect quite well. Another example of a popular form for the com-
pensation charge is the Gaussian shape function used by Blöchl [5],
which our tests show can give good numerical results for both the
Blöchl and Kresse formalisms. One might worry that using these
more localized compensation charge shapes generally increases the
number of plane waves needed to converge the calculations. Fig. 8
illustrates the plane wave convergence of the various compensa-
tion charge shapes for L = 0 using the Li parameters (ra

c = 1.7
bohr). The squared sinc function and the Bessel shape function
with ra

comp = ra
c converges significantly faster than the truncated

Bessel shape function and the Gaussian shape function. In prac-
tice, for the several tests that we have studied, the convergence of
the shape function does not appear to control the overall conver-
gence of the PAW calculations. Several codes [5,3] make use of a
Ewald [22] summation to further improve the convergence of the
compensation charge contributions.

As a result of this analysis, we conclude that the Blöchl formu-
lation of the exchange–correlation terms of the PAW method pro-
vides the best numerical stability. In principle, using the compen-
sation charge contributions only for the Coulombic contributions
for which they were designed, allows for greater choice in the
shape functions which can give both physical results and optimized
plane wave convergence parameters. Furthermore, the numerical
evaluation of the exchange–correlation terms can be done more
efficiently in the Blöchl formulation compared to the Kresse for-
mulation since the evaluation of n̂ within the exchange–correlation
calculations is relatively time-consuming. A new version of ABINIT
has been prepared and will be available in production release 6.1
and higher which has the option of using the Blöchl exchange–
correlation formulation.

While we have argued that the Kresse formulation of the
exchange–correlation terms of the PAW method is poorly moti-
vated and can lead to numerical difficulties, we would like to stress
that the problems we have identified affect a relatively small num-
ber of calculations. With careful control of the parameters, both
the Blöchl and Kresse formulations of the PAW method can pro-
duce results consistent with all-electron results. The experiences
learned in this analysis reinforces the fact that the quantitative ac-
curacy of PAW and other pseudopotential methods relies on careful
scrutiny and testing of the pseudopotential parameters used in
the calculations. The ABINIT website (http://www.abinit.org) gives
the following excellent advice: “Pseudopotentials should always

http://www.abinit.org
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be tested in well-known situations, before using them for predic-
tions.”
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