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1. Introduction

Intuitively, physical quantities are expected to be continuous 
functions of their variables, so it is a surprise to find discon-
tinuities in phonon dispersion curves. Figure 1 shows a typ-
ical representation of phonon dispersion, where the normal 
mode frequencies ων(q) are plotted as a function of phonon 
wavevector q along special directions of the Brillouin zone 
for boron nitride in the zincblende structure1. For this cubic 
structure, the phonon dispersion curves ων(q) appear to be 
continuous functions of q. By contrast, in examining phonon 
dispersion curves for ionic materials having hexagonal or 
other layered structures [1], we often find apparent discon-
tinuities or mode disappearances near the Γ point of the 
Brillouin zone. For example, figure 2 shows the phonon dis-
persion curves for boron nitride in the hexagonal structure. 
For this hexagonal structure, two of the optic phonon disper-
sion curves with wavevector q pointing in a direction within 

a layer plane (M → Γ) end abruptly at the Γ point and seem 
to have no presence in the phonon band diagram for the wave-
vector q pointing in the perpendicular direction (Γ → A). In 
reality, the phonon band diagram represents the same number 
of vibrational modes (in this case 12) throughout the Brillouin 
zone.

The physical reasons for these discontinuities were 
explained in 1951 by Huang [2] and are detailed in several 
textbooks [3–6]. The explanation is based on the analysis of 
the coupling of some of the vibrational modes to long wave-
length electromagnetic waves within the material including 
the effects of Maxwell’s equations  on the system. In this 
report, we show how the dispersion curves of the coupled 
phonon–photon modes can be calculated from first principles 
and can be included in a modified phonon band diagram in 
the |q| → 0 range. The photon-phonon normal modes of cubic 
and hexagonal BN are examined as examples.

The remainder of this paper is organized as follows. 
Section  2 details the general formalism. Section  3 presents 
the results for BN, including a description of the first princi-
ples methods (section 3.1) and results for the phonon–photon 
dispersions in the vicinity of q → 0 range for cubic and 
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1 Following usual practices, for plotting and tabulation purposes, instead 
of representing frequencies in radians per second, we use throughout the 
manuscript ων(q)/(2πc) in units of (cm−1). Here c denotes the speed of 
light in vacuum.
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hexagonal BN (section 3.2). Section 4 contains the summary 
and conclusions.

2. Formalism

The first principles formalism for evaluating vibrational 
modes of periodic solids within the framework of the Born–
Oppenheimer approximation [3] and density functional 
theory [8, 9], has been developed using density functional 
perturbation theory (DFPT) by a number of authors [10–14]. 
This formalism has been implemented in several electronic 
structure code packages such as ABINIT [15] and Quantum 
ESPRESSO [16]. In the following, we approximately follow 
the notation of [13] and [14], using Gaussian units.

The starting point of the analysis is a self-consistent density 
functional calculation to find the optimized total energy of the 
crystalline material, finding the optimized lattice vectors a, b, 
and c, the optimized coordinates τ s of the N atoms labeled s 
within the unit cell, and the corresponding static lattice energy 
per unit cell USL. Here τ s represents the equilibrium position 
within a unit cell and any given cell within the material can 
be represented relative to the origin by a translation vector 
Rl = l1a + l2b + l3c where li denote integer values. Consider 
that an optimized atomic position in unit cell at position Rl  is 
displaced by a small vector us(l).

Rl + τ s → Rl + τ s + us(l). (1)

It is convenient to perform the analysis in phonon wavevector 
space. For a given phonon wavevector q within the Brillouin 
zone,

us(l) = us(q)eiq·Rl , (2)

where us(q) represents the complex amplitude of the atomic 
displacement associated with atom s and wavevector q. Then, 
within the harmonic approximation, and using DFPT, it is 
possible to evaluate the analytic part of the second derivative 
matrix

C̃sα,tβ(q) =
∂2USL

∂u∗
sα(q)∂utβ(q)

. (3)

Here, α and β denote the Cartesian coordinate directions x, y, 
or z. For most of the Brillouin zone where |q| > 0, and within 
the Born–Oppenheimer approximation [3], the ion motion can 
be determined from the classical equations of motion in terms 
of the harmonic restoring force represented by the second 
derivative matrix (equation (3)) according to the equation

Ms
∂2usα(q)

∂t2 = −
∑

tβ

C̃sα,tβ(q)utβ(q). (4)

Here, Ms denotes the mass of atom s. In this analysis, we 
have assumed that the displacement is a continuous function 
of time t according to us(q) → us(q, t) → us(q)e−iωt , where 
the last expression includes the further assumption of a har-
monic time dependence. Typically these equations are solved 
in terms of normal modes of vibration with eigenfrequencies 
ων and eigendisplacements uν

sα:

(ων(q))2 Msuνsα(q) =
∑

tβ

C̃sα,tβ(q)uν
tβ(q), (5)

where ν  labels each of the 3N normal mode solutions corre-
sponding to a unit cell with N atoms. It is convenient to nor-
malize the eigendisplacements according to

∑
sα

|uνsα(q)|2 = 1. (6)

Note that the eigendisplacements satisfy an orthogonality 
condition

∑
sα

Ms

(
uν

′

sα(q)
)∗

uν
sα(q) = Mνδν′ν , (7)

where Mν denotes a mode effective mass.
However, in the long wavelength limit as q → 0, the ionic 

motion couples to the macroscopic electric field. The coupling 
depends on the Born effective charge tensor for each atom 
[17] which can be calculated by evaluating the response of the 
system to an electric field using DFPT. A convenient expres-
sion for the Born effective charge tensor is

Figure 1. Phonon dispersion curves (ων(q)) for cubic BN. The 
inset Brillouin zone diagram was reprinted from Setyawan et al [7], 
copyright (2010), with permission from Elsevier.

Figure 2. Phonon dispersion curves (ων(q)) for hexagonal BN. 
The inset Brillouin zone diagram was reprinted from Setyawan et al 
[7], copyright (2010), with permission from Elsevier.

J. Phys.: Condens. Matter 32 (2020) 055402



Y Li et al

3

eZ∗s
αβ = − ∂2USL

∂usα(q = 0)∂Eβ

∣∣∣∣
usα=0,Eβ=0

. (8)

Here e denotes the elementary charge and Eβ denotes an elec-
tric field in the β direction and the derivative is evaluated in 
the limit of zero field value. We note the asterisk in the nota-
tion (equation (8)) does not imply complex conjugation [12]. 
It can be shown [12, 18] that the Born effective charge tensor 
satisfies the relation for each combination of αβ

∑
s

Z∗s
αβ = 0. (9)

On the other hand, the tensor properties of Z∗s
αβ depend on the 

site symmetry of atom s and for some materials it is possible that 
the Born effective charge tensor is not symmetric such that [19]

Z∗s
αβ �= Z∗s

βα. (10)

Because of the coupling of the ion motion to the long 
wavelength electric field, in the q → 0 range, the ionic dis-
placements are described by the modified equations of motion 
determined by both the harmonic restoring force represented 
by the second derivative matrix (equation (3)) and the cou-
pling due to the Born effective charge tensor (equation (8)) to 
an electric field.

Ms
∂2wsα(q)

∂t2 = −
∑

tβ

C̃sα,tβ(q)wtβ(q) +
∑
β

eZ∗s
αβEβ(q).

 (11)
Here we introduced the notation ws(q) → ws(q, t) →
ws(q)e−iωt to represent the atomic displacements coupled to 
the electric field in order to distinguish them from their uncou-
pled counter parts us(q). In turn, the related electric displace-
ment field D(q) is composed of electric field E(q) screened by 
the electronic response as characterized by the electronic part 
of the dielectric permittivity tensor which is often denoted 
as ε∞αβ and the additional polarization field introduced by the 
vibrating ions according to:

Dα(q) =
∑
β

ε∞αβEβ(q) +
4πe
Ω

∑
tβ

Z∗t
αβwtβ(q). (12)

Here Ω denotes the volume of the unit cell.
We assume that our material is insulating and neutral 

so that the sourceless Maxwell’s equations  apply. We also 
assume that there are no magnetic dipolar effects so that the 
two relations for the electric and displacement fields in the 
q → 0 range resulting from Maxwell’s equations are given by

∇ · D = 0, (13)

and

∇× (∇× E) +
1
c2

∂2D
∂t2 = 0. (14)

In this q → 0 range, we approximate the lattice displace-
ments as continuous functions of position responding to the 
macroscopic electric and magnetic fields within the material, 
seeking plane-wave-like solutions with

ws(l) → w0
s (q)e

iq·r−iωt and E(q) = E0(q)eiq·r−iωt. (15)

In order to solve the coupled equations (11), (13) and (14), 
it is reasonable to assume that the amplitude of the displace-
ments can be expressed as a linear combination of the pure 
vibrational normal modes with unknown amplitudes Uν

w0
sα(q) =

∑
ν

Uν(q)uνsα(q). (16)

Since the analysis is performed in the q → 0 limit the ampl-
itude and eigenvectors can be evaluated at q = 0. Accordingly 
we will drop the q argument in most of the following analysis. 
The coupling effects of the atomic motions and the electric 
field are controlled by the sum of the Born effective charges 
multiplied by the normal mode displacements which can be 
evaluated for each normal mode. It is convenient to define two 
summations according to

Rν
α ≡

∑
tβ

Z∗t
αβuν

tβ (17)

and

Lν
β ≡

∑
sα

(uνsα)
∗Z∗s

αβ . (18)

For many modes ν , the Born coupling parameters are trivial; 
Lν
β = Rν

β = 0. Non-trivial values of Lν
β and Rν

β indicate that 
for this mode, the displacement eigenvector creates an oscil-
lating electrical polarization which typically interacts with 
external infrared radiation. For nontrivial modes, the two cou-
pling parameters Lν

β and Rν
β need not be related. However 

for crystalline materials having atomic sites with high sym-
metry such that relationships in equation (10) are equalities, 
the two coefficients are related according to Rν

α = (Lν
α)

∗. 
By using the expansion (equation (16)) to evaluate the equa-
tion of motion for the displacements (equation (11)), we find 
that the amplitudes Uν are proportional to the electric field 
according to

Uν =
e(

(ων)
2 − ω2

)
Mν

∑
β

Lν
βE0

β .
 (19)

These amplitudes can be used in equation (12) to evaluate the 
frequency-dependent electric displacement field and the corre-
sponding frequency-dependent dielectric tensor according to

εαβ(ω) = ε∞αβ +
4πe2

Ω

∑
ν

Rν
αLν

β(
(ων)

2 − ω2
)

Mν
. (20)

This expression is equivalent to a similar analysis by Gonze 
and Lee [12] and some of the ideas are presented in textbooks 
such as Maradudin et al [5]. Equation (20) is valid for frequen-
cies ω  small enough such that �ω < Eg, where Eg represents 
the electronic band gap. This restriction is consistent with the 
assumption that the electronic dielectric contribution ε∞αβ is 

constant. The estimation of the static dielectric constant, ε0
αβ, 

evaluated by setting ω → 0 is expected to be well justified by 
the expression

J. Phys.: Condens. Matter 32 (2020) 055402
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ε0
αβ ≡ εαβ(ω = 0) = ε∞αβ +

4πe2

Ω

∑
ν

Rν
αLν

β

(ων)
2 Mν

. (21)

It is interesting to mention that equation  (20) is con-
sistent with a Drude-like model of the ionic contributions to 
the di electric function, where (Rν

αLν
β)/(M

ν/me) represents 
an oscillator strength, with me denoting the electron mass. 
Missing from the analysis and from equation (20) are consid-
erations of damping processes that may more fully describe 
the driven oscillator system. Using the notation γν to repre-
sent the damping coefficient for mode ν , equation (20) would 
be modified with an imaginary contribution with alteration of 
the denominator

(
(ων)

2 − ω2
)
→

(
(ων)

2 − ω2 − iωγν
)

. (22)

However, these damping effects are outside the scope of the 
present study.

In order to now solve Maxwell’s equations (equations (13) 
and (14)) in the long wavelength limit, we consider two cases 
in terms of the orientation of the wavevector q relative to the 
electric field orientation. For the case of a longitudinal elec-
tric field, the electric field is along the wavevector direction as 
represented by the unit vector q̂; E0

L = E0 · q̂. For the case of 
a transverse electric field, it is convenient to define the propa-
gation direction q̂ and two perpendicular transverse directions 
denoted by unit vectors T̂1 and T̂2. In this case the electric 
field E0

T  is in the plane spanned by T1 and T2. For example, 
the longitudinal and transverse matrix elements of the elec-
tronic dielectric tensor can be written

ε∞LL ≡
∑
αβ

q̂αε
∞
αβ q̂β and ε∞TiTj

≡
∑
αβ

T̂iαε
∞
αβ T̂jβ ,

 (23)

where i, j = 1, 2. Similarly, we can define longitudinal and 
transverse components of the Born coupling parameters such 
as

Rν
L ≡

∑
α

Rν
αq̂α and Lν

L ≡
∑
β

Lν
β q̂β (24)

for the longitudinal Born coupling parameters, and sim-
ilar expressions can be written for the transverse coupling 
parameters.

In the following analysis, we assume that the dielectric 
tensor (equation (20)) is block diagonal in the directions q̂, 
T̂1, and T̂2, Mixed longitudinal and transverse solutions will 
not be considered in this analysis.

For the longitudinal solutions, the E and D fields both are 
along the direction q̂. However, Maxwell’s equations (equa-
tions (13) and (14)) require that the longitudinal component 
of the frequency-dependent dielectric tensor (equation (20)) 
vanishes:

εLL = ε∞LL +
4πe2

Ω

∑
ν

Rν
LLν

L(
(ων)

2 − ω2
)

Mν
= 0. (25)

Here, the summation is taken only over nontrivial modes 
ν . For any given longitudinal direction q̂, the number nL of 

nontrivial values of longitudinal Born coupling parameters 
Rν

L and Lν
L is less than the total number of normal modes (3N). 

The general solution of equation (25) requires the solution of 
a nth

L  order polynomial in the variable ω2. In the special case 
that nL  =  1 and the nontrivial mode is written with index ν , 
the solution to equation (25) takes the form

ω2 ≡ ω2
L = (ων)

2
+

1
ε∞LL

4πe2

ΩMν
Rν

LLν
L . (26)

This longitudinal ‘LO’ mode does not depend on q.
An alternative approach was developed by Giannozzi 

and others [10, 12, 13] and included in the ABINIT and 
QUANTUM ESPRESSO codes, for example, combining the 
longitudinal component of equation (12) with the longitudinal 
component of equation  (11) to directly solve for the q → 0 
longitudinal modes according to the equation

ω2Msw0
sα(q) =

∑
tβ

C̃tot
sα,tβ(q)w

0
tβ(q). (27)

Here

C̃tot
sα,tβ(q) = C̃sα,tβ(q) +

4πe2

Ωε∞LL
Z∗s

LαZ∗t
βL. (28)

The second term of equation  (28) is usually referenced as 
the non-analytic contribution to the second derivative matrix. 
The direct solution of equation (27) gives the corrected eigen-
modes of the longitudinal atomic displacements in the q → 0 
range. Note that for this longitudinal case, even though the 
long wavelength electrical field is polarized in the longitu-
dinal direction, some of the atomic displacements may have 
components in other directions. It has been noted by Gonze 
and Lee [12] that the eigenvectors of equation  (27) are not 
necessarily the same as the eigenvectors of equation  (5). In 
fact, if we use the pure phonon mode basis to represent the 
atomic displacements in equation (27) as in equation (16), we 
see that the non-analytic term can cause mixing of the pure 
phonon modes. It is possible to determine the nL eigenvalues 
ω2

L  of equation (27) by diagonalizing a nL × nL matrix GL
νν′ in 

the pure phonon mode basis.
∑
ν′

GL
νν′Uν′

= ω2
LUν . (29)

The matrix elements are given by

GL
νν′ = (ων)

2
δνν′ +

1
ε∞LL

4πe2

ΩMν
Lν

LRν′

L . (30)

This is equivalent to solving the polynomial equation implied 
by equation (25) or to directly solving equation (27). However, 
the advantage of solving the eigenvalue problem of equa-
tion (29) is that for each eigenvalue ω2

L , one can also deter-
mine the corresponding eigenvector in terms of the amplitudes 
Uν of the nL coupled pure phonon modes.

For the transverse solutions, Maxwell’s equation  (13) 
is always satisfied since the wavevector is perpendicular 
the electric field direction, while Maxwell’s equation  (14) 
describes another q-dependent coupling relationship between 
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the fields and ion motions. The solutions ω2 = ω2
T  must satisfy 

Maxwell’s equations for the transverse case according to the 
following relationships:

∑
Tj


q2c2δTiTj − ω2

T


ε∞TiTj

+
4πe2

Ω

∑
ν

Rν
Ti
Lν

Tj(
(ων)

2 − ω2
T

)
Mν




E0

Tj
= 0.

 (31)

For any given choice of transverse directions T̂i and T̂j, the 
number nT of nontrivial values of the transverse Born cou-
pling parameters Rν

Ti
 and Lν

Tj
 is less than the total number of 

normal modes (3N). The general solutions of equation  (31) 
requires the solution of a 2nth

T  order polynomial in the variable 
ω2. In the special case that nT  =  1, the transverse electronic 
di electric tensor ε∞TiTj

 is diagonal, and the nontrivial mode is 
written with index ν , the solution to equation (31) for a given 
value of the wavevector q, takes the form

ω2
Ti±(q) =

q2c2 + (ων)
2
ε∞TiTi

+Aν

2ε∞TiTi

(1 ± Sν(q)) . (32)

Here,

Sν(q) ≡

√√√√√1 −
4q2c2 (ων)

2
ε∞TiTi(

q2c2 + (ων)
2
ε∞TiTi

+Aν
)2 , (33)

and

Aν ≡ 4πe2

ΩMν
Rν

Ti
Lν

Ti
. (34)

In the neighborhood of q = 0, the ‘+’ branch of the transverse 
modes takes the value

ω2
Ti+(q ≈ 0) = (ων)

2
+

1
ε∞TiTi

4πe2

ΩMν
Rν

Ti
Lν

Ti
+ Sq2c2. (35)

The value of ω2
Ti+

(q = 0) is numerically the same as the 
longitudinal solution in equation (26) when the electric field 
directions are geometrically the same. For q  >  0, the dis-
persion is that of a photon mode with quadratic coefficient 
S = 1/ε∞TiTi

− 1/ε0
TiTi

. The ‘−’ branch of the transverse modes 
in the q → 0 range have linear dispersion with the form 

ωTi−(q) = qc/
√
ε0

TiTi
 for q ≈ 0. For larger values of wave-

vector, q � ωνc/
√
ε∞TiTi

, the frequency of the transverse 
modes is asymptotic to ωTi−(q) = ων, the normal mode fre-
quency without electric field effects and identifies as a ‘TO’ 
mode. In summary, the solution for ωTi−(q) is photon-like 
at very small values of q and becomes phonon-like, at larger 
values of q. The expressions discussed in this section will be 
illustrated for the example of BN in section 3.2. More general 
analysis for choices of the transverse directions T̂i have been 
worked out for the case of α-GaN by Irmer et al [20] which 
isostructural to hexagonal BN.

It is also possible to write the general equations  for the 
transverse modes for the case nT  >  1 in the pure phonon basis 
similarly to equation  (29). The general expression can be 
written in terms of a generalized eigenvalue problem of the 
form

∑
ν′

GT
νν′Uν′

= ω2
TUν , (36)

where the nT × nT  matrix GT
νν′ is given by

GT
νν′ ≡ (ων)

2
δνν′

+
4πe2

ΩMν

∑
TiTj

(
ε∞ − q2c2

ω2
T

I
)−1

TiTj

Lν
Ti
Rν′

Tj
.

 (37)

This is not a usual eigenvalue problem since the eigenvalue ω2
T  

appears in the expression of the matrix GT
νν′; however iterative 

methods can be used to solve equation (36). Because of this, 
there are generally two solutions for each value of q corre-
sponding to the ωT±(q) branches. The limiting values of the 
results for q  =  0 and q � ωνc/

√
ε∞TiTi

 derived for the simple 
case can be seen from the form of equation (37).

Note that in all of these expressions, the value of the pho-
non–photon coupling is controlled by Born coupling parame-
ters defined in equations (17) and (18) Rν

α and Lν
α, where α is 

the direction of the atomic displacements for the pure phonon 
mode ν . Whether the full solution to the coupled phonon–
photon equations  is longitudinal or transverse depends on 
the direction of the wavevector q relative to the direction α. 
Because of the form of the non-trivial Born coupling param-
eters Lν

β and Rν
β, the modes ν  are often labeled as ‘optical’ 

modes ‘LO’ or ‘TO’ corresponding to longitudinal or trans-
verse, respectively. The ωLO frequencies are shifted relative 
to the frequencies ων of the pure phonon vibrations according 
to equations  (29) and (30) due to their coupling to the long 
wavelength electric fields. However the ωTO frequencies cor-
respond to ωT−(q � ωνc/

√
ε∞TiTi

) = ων, that is having the 
same magnitude as the uncoupled transverse Γ point phonon 
vibrations. While the ABINIT and QUANTUM ESPRESSO 
codes do not explicitly consider the coupled transverse pho-
non–photon modes, all of the necessary parameters are calcu-
lated in order to evaluate equations (30) and (37).

3. Example results for cubic and hexagonal BN

While the equations presented in section 2 apply generally to 
all insulating ionic crystals, it is useful to illustrate the results 
for the simple and well-studied example of boron nitride so 
that we can compare with a large literature of experimental 
[21–28] and computational [29–38] reports.

3.1. Calculational methods

The structural optimizations were based on density func-
tional theory (DFT) [8, 9] and the phonon frequencies and 
eigenvectors of normal vibrational modes were obtained by 
diagonalizing the dynamical matrix using density functional 
perturbation theory (DFPT) [10–14]. The computations 
used the projector augmented wave (PAW) [39] formalism. 
The PAW basis and projector functions were generated by 
the ATOMPAW [40] code. The local density approximation 
(LDA) [41] functional was chosen to treat the exchange-cor-
relation effects. The calculations were carried out by using 
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the ABINIT package [15] and checked with the Quantum 
ESPRESSO [16] package. Visualizations were constructed 
using the XCrySDEN [42] and VESTA [43] software 
packages.

The results were obtained using very tight convergence 
tolerances and dense sampling parameters beyond what was 
actually necessary for convergence. The plane wave expansion 
of the electronic wavefunctions included wavevectors with 
|k + G|2 � (2me/�2)Ecut with Ecut = 80 Ry. The electronic 
structure was sampled on a uniform grid of 16 × 16 × 16 and 
12 × 12 × 8 k-points within the Brillouin zone for the cubic 
and hexagonal structures respectively.

The optimized lattice constant for the cubic cell of BN 
(space group F4̄3m; #216 in the International table of crys-
tallography [44]), was found to be 3.58 Å  which compares 
well with the experimental value [45] of 3.6159 Å  measured 
at room temperature. The optimized lattice constants for the 
hexagonal cell of BN (space group P63/mmc; #194 in the 
International table  of crystallography [44]) were found to 
be a  =  2.49 Å  and c  =  6.49 Å  which compare well with the 
experimental values [46] of a = 2.50 399 ̊A  and c  =  6.6612 ̊A  
measured at room temperature.

The phonon analysis was performed using density func-
tional perturbation theory, sampling the phonon dispersion 
on a uniform grid of 4 × 4 × 4 and 6 × 6 × 2 q-points for 

the cubic and hexagonal structures respectively. These values 
were used in the ABINIT code to generate the phonon disper-
sion curves presented in figures 1 and 2; these are consistent 
with previous calculations in the literature [29, 30, 32, 35].

3.2. Examples of phonon–photon dispersion curves

3.2.1. BN in a cubic structure. Figure 3 shows a diagram of a 
conventional unit cell of BN in the cubic structure (zincblende 
with space group F4̄3m) with two atoms per primitive unit 
cell. The corresponding six phonon dispersion curves ων(q) 
are presented in figure 1. The upper three curves near the Γ 
point are optical modes. At the Γ point (q = 0), the single 
ωLO mode is computed to have frequency 1298 cm−1 while 
the doubly degenerate ωTO modes are computed to have the 
frequency 1069 cm−1. These were determined using the ABI-
NIT and QUANTUM ESPRESSO codes which use the ‘non-
analytic’ corrections to the second derivative matrix given in 

Figure 3. Ball and stick drawing of conventional unit cell of cubic 
BN (space group F4̄3m [44]) indicating one B and one N site within 
a primitive cell. The arrows indicate the vibrational directions  
of the atoms for one of the three degenerate optical modes at q = 0 
(Γ point).

Table 1. Comparison of experimental and calculated optical 
properties of cubic (zincblende) BN, including the electronic 
(ε∞) and static (ε0) dielectric constants, Born effective charges 
(Z∗B = −Z∗N ), and frequencies of TO (ωTO) and LO vibrational 
modes (ωLO) (in units of cm−1).

ε∞ ε0 Z*B ωTO ωLO Reference

4.55 6.70 1.87 1069 1297 Calc. (Present)
4.5 7.1 1065 1340 Exp. ([22])
4.46 6.80 1056 1305 Exp. ([25])
4.54 1.93 1040 1285 Calc. ([29])
4.54 6.74 1.89 1062 1295 Calc. ([31])
4.52 6.93 1027 1269 Calc. ([34])

Figure 4. Phonon and phonon–photon dispersion curves in the 
vicinity of the Γ point of the Brillouin zone for cubic BN. The 
plot includes q points in the direction Γ → X and in the direction 
Γ → L with the 0.005 tick marks indicating the value of q in units 
of the length of the Γ → X distance. The end points of the graph 
correspond to |q| = 1.4 × 105 cm−1. The curves for ων represent 
the modes calculated by ABINIT from equation (5) corrected for 
the TO-LO splitting as shown in figure 1. The coupled longitudinal 
modes are plotted in red while the coupled transverse modes are 
plotted in turquoise for upper branch and blue for lower branch as 
indicated.

Figure 5. Ball and stick drawing of unit cell of hexagonal BN 
(space group P63/mmc [44]) indicating the four B and N sites. The 
arrows indicate the vibrational directions of the atoms for q = 0 (Γ 
point) mode # 7 (a) and for mode # 11 (b).
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equation (27). Because of the high symmetry of this crystal, 

the dielectric tensors ε∞αβ and ε0
αβ are diagonal and isotropic 

as are the Born effective charge tensors Z∗B
αβ = −Z∗N

αβ. The 
results computed in the present work are presented in table 1 
where it is seen that they agree well with both experimental 
measurements and with previous calculations in the literature.

In this case, the pure phonon eigenstate solutions to 
equation  (5) at q = 0 for ν = 4, 5, 6 are degenerate, with 
ων(q = 0) = 1069 cm−1 and with Born coupling param-
eters Rν

α = Lν
α = 2.63 for α = x, y, or z. For each choice of 

wavevector q̂ which defines the longitudinal direction and 
choice of transverse directions T̂1 and T̂2, there are three 
phonon–photon modes with frequencies ωL(q) (from equa-
tion (26)), and ωT±(q) (from equation (32)). In order to rep-
resent the phonon–photon modes in a conventional phonon 
band diagram, we must choose the wavevector values near 
q = 0 along the special directions of the Brillouin zone. 
Because of the high symmetry of this crystal, the values of 
the electronic dielectric function ε∞αα and the Born coupling 
parameter Rν

α are the same for all directions α, the disper-
sion curves of ωL(q) and ωT±(q) have the same shape in each 
of the plotting directions, although their meanings differ. For 
example, consider the plot for Γ → X direction in the phonon 
band diagram. In this case, the longitudinal direction is q̂ = x̂ 
while the transverse directions can be T̂1 = ŷ and T̂2 = ẑ 
or an equivalent permutation. As another example, consider 
the plot for Γ → L (〈1 1 1〉 direction) in the phonon band 
diagram. In this case, the longitudinal direction is along the 
〈1 1 1〉 direction, while the transverse directions are any two 
directions perpendicular to 〈1 1 1〉. Similarly, plotting the dis-
persions in the Γ → K  (〈1 1 0〉 direction) in the phonon band 
diagram means that the longitudinal mode is along the 〈1 1 0〉 
direction while the transverse directions are perpendicular to 
〈1 1 0〉. The phonon–photon dispersion curves are plotted in 
figure 4 in the Γ → X and Γ → L directions together with the 
pure phonon modes in a small range (1.4 × 104 cm−1) of the 
Brillouin zone near q = 0.

3.2.2. BN in a hexagonal structure. Figure 5 represents ball 
and stick diagrams of primitive cells of h-BN having the 
P63/mmc structure and 4 atoms per primitive unit cell. The 
corresponding 12 phonon dispersion curves ων(q) as calcu-
lated by ABINIT were presented in figure  2. This structure 
of BN has less symmetry than that of the cubic phase but the 
di electric tensors and Born effective charge tensors are diagonal 
having the form Qxx = Qyy for tensor components represent-
ing the hexagonal layers and distinct values Qzz representing 

components along the c-axis. Values of the di electric tensor 
components, Born effective charge tensor components, and 
values of ωTO(q � ωνc/

√
ε∞TiTi

) and ωLO(q = 0) are listed 
in table  2 where they are compared with experiments and 
computations. In general, the present calculations are in good 
agreement with the literature except for the experimental val-
ues of εzz reported by Geick et al [21].

For hexagonal BN, it turns out that of the 12 normal modes 
at q = 0, only three have nontrivial values of Rν

α = Lν
α. The 

lowest frequency mode that has a nontrivial value of Rν
α 

is mode #7 with calculated frequency ων(q = 0) = 752 
cm−1 and α = z. The relative atomic displacements for this 
mode are illustrated in figure 5(a). In this case the non-zero 
Born coupling parameter is found to have the magnitude 
Rν

z = Lν
z = 1.61. The longitudinal mode is therefore along 

the ẑ axis, q̂ = ẑ, and the longitudinal frequency calculated 
from equation (26) is ωL = 820 cm−1 which can be plotted as 
a horizontal line on the phonon band diagram in the Γ → A 
direction. The corresponding transverse modes associated 
with this vibration can have the electric field along the T̂1 = ẑ 
direction so that q̂ and T̂2 are oriented along x̂ and ŷ. In the 
conventional phonon band diagram, the two dispersive trans-
verse modes ωT±(q) could then be plotted along the Γ → M 
and Γ → K  directions.

The other two normal modes with nontrivial values of 
Rν

α = Lν
α are the doubly degenerate modes #11 and #12 

with α = x  and α = y. The relative atomic displacements for 
one of these modes are indicated in figure 5(b). In this case, 
ων(q = 0) = 1383 cm−1 and the non-zero Born coupling 
parameter is found to have the magnitude Rν

α = Lν
α = 5.35 

where α = x  or α = y. The nondispersive longitudinal fre-
quency of this LO mode is calculated (via equation (26)) to 
be ωL = 1614 cm−1 and can be plotted along the Γ → M and 
Γ → K  directions. For the case that α = x , the corresponding 
transverse modes associated with this vibration have the elec-
tric field direction along the T̂1 = x̂ direction so that q̂ and 
T̂2 are oriented along ŷ and ẑ. For the case that α = y, the 
corresponding transverse modes associated with this vibration 
have the electric field direction along the T̂1 = ŷ direction so 
that q̂ and T̂2 are oriented along ẑ and x̂. Therefore, in the 
conventional phonon band diagram, the two dispersive trans-
verse modes ωTi±(q) are then plotted along the Γ → A (x̂ or 
ŷ transverse to ẑ) and Γ → K  (x̂ transverse to ŷ) or Γ → M 
(ŷ transverse to x̂), accordingly. For all three of the coupled 
phonon–photon modes, the analytical formulas of equa-
tions (26) and (32) apply. The results are plotted in figure 6 
in a small range of q points near the Γ point of the Brillouin 
zone (3.9 × 104 cm−1).

Table 2. Comparison of experimental and simulated optical properties of hexagonal (P63/mmc) BN, including the electronic (ε∞xx , ε∞zz ) and 
static (ε0

xx, ε0
zz) dielectric constants and Born effective charges (Z∗B

xx = −Z∗N
xx , Z∗B

zz = −Z∗N
zz ). Here x refers to the hexagonal plane and z 

refers to the c axis direction. Also listed are the lower and higher frequency optical mode frequencies in units of cm−1.

ε∞xx ε∞zz ε0
xx ε0

zz Z∗B
xx Z∗B

zz ωlow
TO ωlow

LO ωhigh
TO ωhigh

LO Reference

4.88 2.85 6.65 3.39 2.70 0.81 752 820 1383 1614 Calc. (Present)
4.95 4.10 7.04 5.09 783 828 1367 1610 Exp. [21]
4.85 2.84 6.61 3.38 2.71 0.82 754 823 1382 1614 Calc. [31]
4.87 2.95 6.71 3.57 746 819 1372 1610 Calc. [34]
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4. Summary and conclusions

In this report we set out to investigate the detailed origin of 
apparent discontinuities and mode disappearances in phonon 
band diagrams of ionic materials having hexagonal and other 
anisotropic structures. This resulted in a synthesis of the work 
of Huang [2, 3], Giannozzi et al [10], Gonze et al [12], Baroni 
et al [13], and others to derive the coupled equations for the 
ion motion and long wavelength electric fields using results 
from density functional theory and density functional pertur-
bation theory. Current codes such as ABINIT and QUANTUM 
ESPRESSO include the effects on the longitudinal optical 
modes by introducing the so-called non-analytic correction to 
the second derivative matrix (equation (28)). In this work, we 
extend the analysis to include the transverse phonon–photon 
modes as well. The combination of the longitudinal and trans-
verse phonon–photon mode dispersions are continuous func-
tions of the wavevector q as has been demonstrated for cubic 
and hexagonal BN in figures 4 and 6, respectively. In prin-
ciple, it should be possible to experimentally explore the trans-
verse mode dispersions near q → 0. For example, Henry and 
Hopfield [47] showed that Raman spectroscopy can be used in 
a small angle scattering geometry to couple to the polariton. In 
a more recent example, heterostructures including hexagonal 
BN have been developed and measured with infrared micros-
copy to map the phonon–photon dispersion modes [48].

As a practical consideration, it may useful to further explore 
the use of the q = 0 pure phonon mode basis (equation (16)) 
in order to analyze the longitudinal and transverse eigenvalues 
and eigenvectors as in equations (29), (30) and (36), (37).
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Appendix. Some practical details

In practice, the phonon dispersion curves are usually evalu-
ated not directly in units of angular frequency ω  (rad/sec) 
but in units of wave number ω̃ ≡ ω/(2πc) (cm−1), where c 
denotes the speed of light in vacuum. Therefore in order to 
evaluate the constants in equation (26) for example:

4πe2

ΩMν
→ 1

(2πc)2

4πe2

ΩMν
≡ 16π

(eH

hc

)2 1
Ω/a3

B

1
Mν/me

. (A.1)

Here eH denotes the ground state energy of a H atom, h denotes 
Planck’s constant, aB denotes the Bohr radius, and me denotes 
the electron mass.
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