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Abstract

The Projector Augmented Wave (PAW) formalism developed by Blöchl [Phys. Rev. B 50, 17953 (1994)] is an accurate and
efficient pseudo-potential-like scheme for electronic structure calculations within density functional theory and is now implemented
in several electronic structure codes. Some of these codes use an implementation of the formalism developed by Kresse et al. [Phys.
Rev. B 59, 1758 (1999)] which differs slightly from the original Blöchl formalism and which which can lead to different electronic
structure results. In this paper, we analyze and illustrate the difference between the Blöchl and Kresse PAW formulations.
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1. Introduction

The tools available for detailed first-principles studies of ma-
terials have benefited enormously from the development of sev-
eral international collaborations engaged in developing open
source electronic structure code packages. For example, the
WIEN2k[1] package is based on linearized augmented plane
wave (LAPW) method[2], while ABINIT[3] and PWSCF[4]
are based on several different pseudopotential methods. These
collaborations have resulted in well-designed shared codes
which incorporate many of the best “state of the art” method-
ologies. Validation is an important aspect of code development
and most of the collaboration teams have incorporated internal
tests as part of their development procedures. The availability
of several independently developed codes, provides the oppor-
tunity for further testing and validation.

The present paper deals with the identification and analy-
sis of a particular discrepancy between two independent codes
in their implementation the projector augmented wave (PAW)
method developed by Blöchl.[5] We show that the discrepancy
can be traced to a slight formalism difference in the two imple-
mentations. Since one of the codes (ABINIT) is widely used
and because our analysis may be relevant to some of the other
codes which have adopted the PAW method, we thought it use-
ful to publish our findings.

All calculations were performed within the framework of
density functional theory[6, 7] using exchange correlation func-
tionals with either the local density approximation (LDA),[8]
or the generalized gradient approximation (GGA).[9] The in-
dependent codes used for the comparison of PAW implemen-
tations are PWPAW[10] and ABINIT[3] using the same PAW
basis and projector functions generated using the ATOMPAW
code[11] and the atompaw2abinit converter program available
at the ABINIT website. These codes have been compared with
each other and with other independent codes, and for most ma-

Table 1: PAW parameters used in calculations: the pseudopotential radius ra
c

(in bohr), list of shell designations n1l1(rm1 )n2l2(rm2 ) . . . of basis and projector
functions used in the calculation and corresponding radii rmi (in bohr) used to
match the all-electron and pseudo radial wavefunctions. The symbol ε indicates
the use of unbound basis functions with energies ε = 2.0, 0.0, and 3.0 Ry for F,
Si, and Cu, respectively.

Atom ra
c {nili(rmi )}

Li 1.7 1s(1.4) 2s(1.7) 2p(1.7)
F 1.5 2s(1.5) εs(1.5) 2p(1.5) εp(1.5)

Si (valence) 2.0 3s(2.0) 3p(2.0) εd(2.0)
Si (semicore) 1.5 2s(1.5) 3s(1.5) 2p(1.5) 3p(1.5)

Cu 2.3 3s(1.5) 4s(2.2) 3p(1.5) 4p(2.2)
3d(1.5) εd(2.2)

terials the agreement is excellent. However, three example ma-
terials serve to illustrate the discrepancy. These materials use
the PAW basis and projector function parameters listed in Table
1.

The first example is the highly ionic material LiF in the rock-
salt structure. Figure 1 shows plots of electronic energy ver-
sus cubic lattice parameter a, comparing the PAW results from
both PAW codes with the all-electron results generated by the
WIEN2k code. In general there is excellent agreement among
all of the results, with the obvious exception of the ABINIT
results for the GGA functional, where the equilibrium lattice
constant is found to be 0.006 nm larger than that of the others.

The second example is Si in the diamond structure is shown
in Fig. 2. In this case, only the GGA results are presented for
two different basis and projector sets – “valence” and “semi-
core” defined in Table 1. We see that while the “valence” basis
set gives results in good agreement between WIEN2k, PWPAW,
and ABINIT, the “semicore” basis set used with the ABINIT
code results in a discrepancy compared the other results. While
this discrepancy is not as large as the discrepancy for the GGA
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Figure 1: Plots of electronic energy (E) of LiF as a function of lattice con-
stant (a) determined from the WIEN2k,[1] PWPAW,[10] and ABINIT[3] codes,
comparing LDA[8] (upper plot) and GGA[9] (lower plot) results.

functional results of LiF, it is larger than it should be if the codes
were performing the same calculations with the same input pa-
rameters, as designed.
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Figure 2: Plot of the electronic energy (E) of Si as a function of lattice constant
(a) calculated using the GGA functional, comparing results using 3 codes and
2 different PAW basis and projector sets as explained in Table 1 and in the text.

Finally, in Fig. 3 we show binding energy curves for Cu in
the fcc structure, comparing LDA and GGA results. In this
case, the PAW calculations used basis and projector functions
including semicore states in order to accurately represent the
3d contributions. The results show that there is a small discrep-
ancy between the calculations using the LDA functional and
a much larger discrepancy for ABINIT code results using the
GGA functional.

These three examples show extreme examples of the discrep-
ancies between the two codes. By contrast, there are many
other materials which show excellent agreement between the
two codes. As we will show, the origin of the discrepancies
turns out to be due to a subtle difference in formalisms.

0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4
a (nm)

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

E
 (

eV
)

WIEN2k
PWPAW 
ABINIT

Cu  (LDA)

0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.4 0.41
a (nm)

0
0.05

0.1
0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

E
 (

eV
)

WIEN2k
PWPAW 
ABINIT

Cu  (GGA)

Figure 3: Plots of electronic energy (E) of Cu as a function of lattice constant
(a) comparing results obtained the LDA and GGA functionals and 3 computer
codes.

In Sect. 2 we discuss the PAW implementations used by the
two codes and identify the terms which cause the discrepan-
cies. In Sect. 3 we illustrate the behaviors of the problematic
terms. Section 4 summarizes the results and discusses several
approaches to avoiding this difficulty.

2. Formalism

In addition to the original paper by Blöchl,[5] there are now
several paper which detail the PAW formalism.[12, 13, 14, 11,
10, 15, 16, 17] The basic idea can be summarized in terms of
the PAW expression of the valence electron energy of the sys-
tem as a combination of smooth contributions evaluated over
all space plus a sum of atom-centered terms which contribute
within “augmentation” spheres, of radii ra

c about each atomic
site a:

Evale = Ẽvale︸︷︷︸
pseudo-energy

+
∑

a

(
Ea

vale − Ẽa
vale

)︸           ︷︷           ︸
atom-centered corrections

. (1)

In principle, the pseudo-energy contributions within each aug-
mentation sphere are canceled out of the expression by the
atom-centered pseudo-energy Ẽa

vale and replaced by the atom-
centered full nodal valence energy Ea

vale. Provided that the can-
cellation is well approximated, there is considerable freedom
in the formulation of pseudofunctions within the augmentation
spheres. Consequently, there are some variations in the detailed
formulations of the PAW method described in the literature.
The ABINIT formulation[17] follows that of Kresse[14] which,
apart from regrouping of the terms in the expressions, differs
from the original formulation of Blöchl[5, 15] in the treatment
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of the pseudo exchange-correlation contributions. In particular,
denoting by n(r) and nc(r) the valence and core electron fully
nodal charge densities and by ñ(r) and ñc(r) the correspond-
ing valence and core electron pseudo-densities, Blöchl’s form
of the exchange-correlation energies can be expressed in terms
of the functional dependencies:

EB
xc = Exc [̃n + ñc] +

∑
a

(
Ea

xc[na + na
c] − Ea

xc [̃na + ña
c]
)
. (2)

Including the smooth core pseudo-densities in the evaluation
of the functional follows the notion of the non-linear core cor-
rection introduced by Louie et. al[18] which has been demon-
strated to work well for norm-conserving pseudopotentials and
also works well for the PAW formalism. On the other hand
Kresse’s version of the exchange-correlation energies has the
form

EK
xc = Exc [̃n + ñc + n̂] +

∑
a

(
Ea

xc[na + na
c] − Ea

xc [̃na + ña
c + n̂a]

)
.

(3)
Here the extra term n̂(r) is the valence compensation charge,
which can be defined1 in the notation of references [14] and
[17] to be

n̂(r) =
∑

ai jLM

ρa
i jQ̂

aLM
i j (r), (4)

where a is the atomic site index, i j are basis and projector func-
tion indices and LM are spherical harmonic indices. The coeffi-
cients ρa

i j are determined from the Bloch pseudowavefunctions

Ψ̃nk(r) and the projector functions p̃a
i (r) by the expression

ρa
i j =

∑
nk

fnk〈Ψ̃nk|p̃a
i 〉〈p̃

a
j |Ψ̃nk〉, (5)

where fnk represents the sampling weight and occupancy of the
Bloch state. The compensation spatial functions Q̂aLM

i j (r) are
localized within the augmentation sphere of atom a and have
the form

Q̂aLM
i j (r) ≡ qLM

i j gL(|r − Ra|)YLM(r̂ − Ra), (6)

where YLM(r̂ − Ra) denotes a spherical harmonic function, qLM
i j

is a coefficient representing the LMth moment associated with
the pair of basis functions i and j, and gL(|r − Ra|) denotes a
radial shape function with the properties

gL(r) ≡ 0 for r ≥ ra
c and

∫ ra
c

0
dr r2+LgL(r) = 1. (7)

The purpose of the compensation charge density n̂(r) is to add
the correct amount of charge moments to the valence pseudo-
density

ñ(r) ≡
∑
nk

fnk|Ψ̃nk(r)|2 (8)

so that outside the augmentation region of all the atoms, the
Coulomb (or Hartree) potential for the sum of the valence

1In Ref. [5] and several others, the definition of n̂(r) includes nuclear and
core electron charges which are not in the present formulation.

pseudo and compensation charge densities ñ(r) + n̂(r) is the
same as that for the fully nodal valence electron density n(r):

VH(r) =
∫

d3r′
ñ(r′) + n̂(r′)
|r − r′|

|r−Ra |>ra
c

=

∫
d3r′

n(r′)
|r − r′|

. (9)

While the inclusion of compensation charge density n̂(r) is es-
sential to correctly representing the Coulombic interactions of
the system, it is not obvious that n̂(r) has any physical mean-
ing in the argument of exchange-correlation functionals which
are based on either a local density approximation (LDA)[8] or a
generalized gradient approximation (GGA)[9]. For these func-
tionals, at any given spatial point r, the exchange-correlation
contribution depends on the density (and its gradient in the case
of GGA) at that point. Formally, all pseudofunction contribu-
tions within the augmentation sphere, cancel out of the energy
and Hamiltonian expressions, so that in general, the presence of
the compensation charge in the exchange-correlation functional
the expression should do no harm. However, in some cases,
such as those presented in the introduction, inclusion of n̂(r) in
the argument of the pseudo exchange-correlation functional can
introduce non-canceling errors as will be demonstrated in more
detail in Sec. 3.

3. Examples

In order to visualize the effects of the two formulations of
PAW exchange-correlation contributions, we first consider the
example of Li with the GGA functional and the PAW parame-
ters listed in Table 1. In order to describe correct behavior in the
highly ionic compound of LiF, all 3 electrons of Li are treated
as valence electrons (nc ≡ 0 and ñc ≡ 0). Figure 4 shows plots
of the all-electron density n(r), the pseudodensity ñ(r), and the
sum of the pseudodensity and the compensation charge density
ñ(r) + n̂(r). In these calculations, the squared sinc function was
used for the compensation charge shape:

gL(r) =

 NLrL
(

sin(πr/ra
c )

πr/ra
c

)2

for r ≤ ra
c

0 for r > ra
c

, (10)

whereNL is a normalization constant. The middle panel of Fig.
4 shows the Hartree potentials which results from these charges.
The Hartree potential for the sum of the pseudodensity and the
compensation charge density smoothly converges to the correct
fully nodal valence Hartree potential as r → ra

c . The bottom
panel of Fig. 4 shows the GGA exchange-correlation potential
corresponding to the various charge densities. This plot shows
that for the Blöchl formulation, µxc [̃n] smoothly converges to
the all-electron exchange-correlation function µxc[n]. On the
other hand, for the Kresse formulation, µxc [̃n + n̂] shows un-
physical behavior near r ≤ ra

c due to a significant discontinuity
in the curvature of [̃n + n̂] in that region.

We also constructed a similar comparison of the densities and
potentials for Si using the semicore configuration listed in Table
1 and the GGA exchange-correlation functional. The semicore
configuration is necessary for accurately representing ionic ma-
terials such as SiO2, but should also be able to accurately rep-
resent pure Si. The squared sinc function (10) was again used
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Figure 4: Plots of radial charge densities (top panel), Hartree potentials (second
panel), and GGA exchange-correlation potentials (lower panel) for Li with ra

c =

1.7 bohr. The compensation charge density n̂ is constructed using the squared
sinc function defined in Eq. (10).

for the compensation charge shape. The results are shown in
Fig. 5. In this case, there is a nontrivial core electron con-
tribution nc(r), however because it is so localized within the
augmentation radius, ñc(r) ≈ 0. On the other hand, the com-
pensation charge density n̂ does contribute substantially to the
pseudo exchange-correlation potential, and again causes a dis-
continuity in the vicinity of ra

c .
An obvious question at this point is whether there might

be a better choice of the compensation charge shape. In fact,
the original paper describing their modified PAW formalism,
Kresse et al.[14] introduced a Bessel function shape of the
form:

gB
L (r) =

 NL

[
jL

(
x′L1r
rcomp

)
−

jL(x′L1)
jL(x′L2)

jL

(
x′L2r
rcomp

)]
for r ≤ rcomp

0 for r > rcomp

,

(11)
where x′Li denotes the ith zero of the first derivative of the
spherical Bessel function jL(x) and NL denotes a normaliza-
tion constant. As for the squared sinc function, this Bessel
shape function is designed to vanish quadratically at the cho-
sen radius. Kresse et al. recommend that the radius parameter
be chosen such that ra

c/rcomp ≈ 1.2. Figure 6 compares the
GGA exchange-correlation functionals of Cu constructed using
Blöchl’s form and Kresse’s form with two different compensa-
tion charge shapes both generated using the ATOMPAW code.
In this example, we see that for using the Kresse form of the
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Figure 5: Plots of radial charge densities (top panel), Hartree potentials (middle
panel) and GGA exchange-correlation potentials (lower panel) for Si with ra

c =

1.5 bohr. The compensation charge density n̂ is constructed using the squared
sinc function defined in Eq. (10).

exchange-correlation treatment, the Bessel shape function for
the compensation charge is numerically much better behaved
than is the squared sinc function. However, it is again clear
that the Blöchl form of the exchange-correlation treatment con-
verges most smoothly to the all-electron function in the neigh-
borhood of the augmentation sphere boundary.

These examples of discontinuous behavior of pseudo
exchange-correlation potentials are obviously extreme cases,
chosen to illustrate the problem clearly. In the examples shown
in Figs. 4, 5, and 6 it is apparent that the discontinuities in
the pseudo exchange-correlation potentials near ra

c seem to be
the likely cause of the discrepant structural results presented in
Sec. 1. The pseudo exchange-correlation energy and poten-
tial contributions and related functions2 within the augmenta-
tion sphere are designed to cancel out of the calculation. In
practice, in each pair of cancelling terms, one term is evalu-
ated in Fourier space while the other is evaluated on a radial
grid. The cancellation of these terms is only possible if their in-
tegrand functions are numerically well-behaved. Furthermore,
the one-center terms defined in Eq. (1) are evaluated on radial
grids centered on each atom. Their accurate evaluation relies on
the assumption that the difference between the all-electron and

2Because they are constructed by unscreening smooth local pseudopoten-
tials, the local ionic potentials (va

H [̃nZc](r) defined in Ref. [14] or v̄a(r) de-
fined in Ref. [5]) are also affected by discontinuities in the pseudo exchange-
correlation potential.
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Figure 6: GGA exchange-correlation potentials for Cu using ra
c = 2.3 bohr,

comparing functionals of all-electron density (nc + n), Blöchl’s pseudodensity
(̃nc+ ñ), and Kresse’s pseudodensity (̃nc+ ñ+ n̂) using the squared sinc compen-
sation charge shape, and (̃nc + ñ + n̂B) using the Bessel function compensation
charge shape.

pseudo-potential contributions smoothly vanish in the vicinity
of ra

c , which is violated for the exchange-correlation contribu-
tions in these examples.

In order to verify our analysis of this problem we have writ-
ten modified versions of the ATOMPAW, ABINIT, and PW-
PAW codes, allowing for the treatment of both the Blöchl and
Kresse formulations of exchange-correlation energies (Eqs. 2
and 3) and the corresponding Hamiltonian terms within each
of the codes. Figure 7 shows the results for Cu using the
exchange-correlation functional, comparing the both the Blöchl
and Kresse forms using both of the modified codes. Here we
see that all results using the Blöchl formalism are in excellent
numerical agreement. The results from the two codes using the
Kresse form with the squared sinc function have a relatively
small numerical discrepancy with each other, undoubtedly due
to slightly different treatments of the discontinuous exchange-
correlation functional. The ABINIT code is also able to use the
Bessel shape compensation charge (Eq. (11)) and those results
are also shown in Fig. 7. In this case, both the Kresse and
Blöchl forms are in good agreement with each other and with
the results of the Blöchl form using the squared sinc function.

Table 2 summaries the numerical results of all of the test
cases considered in this work. The equilibrium lattice constants
(a0) and bulk moduli (B) were obtained by fitting the binding
energy results to the Murnaghan equation of state.[19]

4. Summary and conclusions

In this work, we have demonstrated that the original Blöchl
PAW formalism for the exchange-correlation contributions (2)
avoids numerical difficulties that can occur with the Kresse for-
mulation (3). In order to clarify the issue, we have chosen
extreme examples of the problem. From these examples, it
is apparent that the origin of the problem is due to the fact
that the the exchange-correlation functions are very sensitive
to the local shape of the density. Since these functionals were
designed[8, 9] to represent physical densities it is perhaps not
surprising that the arbitrary shape of the valence compensation
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Figure 7: Comparison of binding energy curves for Cu using the GGA
exchange-correlation functional using the Blöchl (B) and Kresse (K) for-
malisms and the modified PWPAW and ABINIT codes. Also shown are results
using the Bessel compensation charge shape (Eq. 11) in both schemes using
the ABINIT code.

charge can cause spurious exchange-correlation contributions
particularly when it is significantly larger than the physical den-
sity. We expect that this problem will become even more se-
rious as more complicated functionals, which can depend on
higher order density derivatives are developed.[20]

In practice, the error we have identified can be ameliorated
by choosing other radial shape functions than the squared sinc
function defined in Eq. (10). The example for Cu using the
Bessel function shape compensation charge defined in Eq. (11)
illustrates this effect quite well. Another example of a pop-
ular form for the compensation charge is the Gaussian shape
function used by Blöchl,[5] which our tests show can give good
numerical results for both the Blöchl and Kresse formalisms.
One might worry that using these more localized compensation
charge shapes generally increases the number of plane waves
needed to converge the calculations. Figure 8 illustrates the
plane wave convergence of the various compensation charge
shapes for L = 0 using the Li parameters (ra

c = 1.7 bohr).
The squared sinc function and the Bessel shape function with
ra

comp = ra
c converges significantly faster than the truncated

Bessel shape function and the Gaussian shape function. In prac-
tice, for the several tests that we have studied, the convergence
of the shape function does not appear to control the overall con-
vergence of the PAW calculations.

As a result of this analysis, we conclude that the Blöchl for-
mulation of the exchange-correlation terms of the PAW method
provides the best numerical stability. In principle, using the
compensation charge contributions only for the Coulombic con-
tributions for which they were designed, allows for greater
choice in the shape functions which can give both physical re-
sults and optimized plane wave convergence parameters. Fur-
thermore, the numerical evaluation of the exchange-correlation
terms can be done more efficiently in the Blöchl formulation
compared to the Kresse formulation since the evaluation of n̂
within the exchange-correlation calculations is relatively time-
consuming. A new version of ABINIT has been prepared and
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Table 2: Ground state parameters for LiF, Si, and Cu determined from fit of
calculations to the Murnagham[19] equation of state, listing the equilibrium
lattice constant a0 (nm) and bulk modulus B (GPa). The notation (B) and (K)
denote the Blöchl and Kresse formalisms for the exchange-correlation func-
tionals respectively For Si (v) and (s) denote the valence and semicore basis
sets respectively detailed in Table 1. Most calculations used the squared sinc
form (Eq. 10) for the compensation charge shape; two calculations for Cu were
performed using the Bessel function compensation charge shape (Eq. 11) with
the notation [Bes].

LDA GGA
Method a0 B a0 B

LiF
WIEN2k 0.391 87 0.407 66

PWPAW (B) 0.392 85 0.408 66
ABINIT (K) 0.392 85 0.414 66

Si
WIEN2k 0.547 87

PWPAW (B) (v) 0.547 89
ABINIT (K) (v) 0.547 88
PWPAW (B) (s) 0.547 88
ABINIT (K) (s) 0.549 87

Cu
WIEN2k 0.355 170 0.366 130

PWPAW (B) 0.356 160 0.367 120
ABINIT (B) 0.356 160 0.367 120

ABINIT (B) [Bes] 0.367 120
ABINIT (K) [Bes] 0.368 120

PWPAW (K) 0.375 110
ABINIT (K) 0.357 160 0.374 110

will be available in production release 6.1 and higher which has
the option of using the Blöchl exchange-correlation formula-
tion.

While we have argued that the Kresse formulation of the
exchange-correlation terms of the PAW method is poorly mo-
tivated and can lead to numerical difficulties, we would like to
stress that the problems we have identified affect a relatively
small number of calculations. With careful control of the pa-
rameters, both the Blöchl and Kresse formulations of the PAW
method can produce results consistent with all-electron results.
The experiences learned in this analysis reinforces the fact
that the quantitative accuracy of PAW and other pseudopoten-
tial methods relies on careful scrutiny and testing of the pseu-
dopotential parameters used in the calculations. The ABINIT
website (http://www.abinit.org) gives the following ex-
cellent advice: “Pseudopotentials should always be tested in
well-known situations, before using them for predictions.”
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