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Method for PAW dataset generation 
 

PAW calculations require, for each atomic species, a set of basis (partial-waves) and 

projectors functions plus some additional atomic data stored in a PAW dataset. A PAW 

dataset has to be generated in order to reproduce atomic behavior as accurately as possible 

while requiring minimal CPU and memory resources in executing the DFT code for the 

crystal simulations. These two constraints are conflicting. 

 

The PAW dataset generation is done according the following procedure: 
 

All parameters that should be given in an atompaw input file are in bold. 
 

1- Choose and define the concerned chemical species: name and atomic number. 

2- Solve the atomic all-electrons problem in a given atomic configuration. The atomic 

problem is solved within the DFT formalism, using an exchange-correlation 

functional and either a Schrödinger (default) or scalar-relativistic approximation. It is 

a spherical problem and it is solved on a radial grid. Other approximations can be 

given (as, for example, the behavior of the nuclear potential). The atomic problem is 

solved for a given electronic configuration that can be an ionized/excited one. 

3- Choose a set of electrons that will be considered as frozen around the nucleus (core 

electrons). The others electrons are valence ones and will be used in the PAW basis. 

The core density is then deduced from the core electrons wave functions. A smooth 

core density equal to the core density outside a given rcore matching radius is 

computed. 

4- Choose the size of the PAW basis (number of partial-waves and projectors). Then 

choose the partial-waves included in the basis. The later can be atomic eigen-functions 

related to valence electrons (bound states)  in fact this is mandatory with atompaw  

and/or additional atomic functions, solution of the wave equation for a given l 

quantum number at arbitrary reference  energies (unbound states). 

5- Generate pseudo partial-waves (smooth partial-waves build with a pseudization 

scheme and equal to partial-waves outside a given rc matching radius) and associated 

projector functions. Pseudo partial-waves are solutions of the PAW Hamiltonian 

deduced from the atomic Hamiltonian by pseudizing the effective potential (a local 

pseudopotential is built and equal to effective potential outside a rvloc matching 

radius). Projectors and partial-waves are then orthogonalized with a chosen 

orthogonalization scheme. 

6- Build a compensation charge density used later in order to retrieve the total charge of 

the atom. This compensation charge density is located inside the PAW spheres and 

based on an analytical shape function (which analytic form and localization radius 

rshape can be chosen). 

7- Eventually, if desired, test the resulting PAW dataset on several electronic test 

configurations. 
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How to use atompaw 
 
 

1- Compile atompaw: 
atompaw uses the standard Linux installation procedure (autoconf) … 

 

o In atompaw source tree, type: mkdir build ; cd build 
 ../configure 

If the configure script complains, add additional options: 
FC=… to select a specific Fortran compiler 
--prefix=”…” to specify the destination directory 
--with-linalg-libs=”…” to select your Blas/Lapack libraries 
--enable-libxc --with-libxc-incs=” ” --with-libxc-libs=” ” to add LibXC support (see appendix) 

configure --help for all available options… 
 

o Then compile and install the code: make ; make install 
 
2- Edit an input file in a text editor (content of input is explained in the following). 
 
3- Run atompaw: atompaw < inputfile 
 

 

Partial-waves, PS partial-waves and projectors are given in wfn.i files. 

Logarithmic derivatives from atomic Hamiltonian and PAW Hamiltonian resolutions 
are given in logderiv.l files. 

A summary of the atomic all-electrons computation and PAW dataset properties can be 
found in the Atom_name file (Atom_name is the first parameter of the input file). 

 

Resulting PAW dataset can be output in several different formats: 

○ Atom_name.atomicdata file (keyword: PWPAWOUT) 

Specific format for pwpaw, and soccoro codes 

○ Atom_name.XCfunc.xml file (keyword: XMLOUT) 

Normalized xml file according to specifications from 
http://wiki.fysik.dtu.dk/stuff//pawxml/pawxml.xhtml; can be used with abinit 
code 

○ Atom_name.XCfunc-paw.abinit file (keyword: ABINITOUT) 

Specific format for abinit code 

○ Atom_name.XCfunc-paw.upf file (keyword: PWSCFOUT) 

Specific format for pwscf code 

 
 

Additional details can be found in: 
  

- “Notes for revised form of atompaw code” 
http://www.wfu.edu/~natalie/papers/pwpaw/notes/atompaw/atompawEqns.pdf 

 

- “Part I manuscript.pdf” 
http://dx.doi.org/10.1016/S0010-4655(00)00244-7 
(be careful: some obsolete chapters inside). 

 



 
  User’s guide for atompaw        4 

 

Input file for atompaw 
In red, mandatory arguments 
In green, optional arguments 

 

Keywords are in normal font 
Numbers are in italics 

 

 
 

Atom_name Z 

XC_functional rel_keyword nucleus_keyword grid_keyword logderivrange  

nsmax npmax ndmax nfmax ngmax 

n l occnl 

n l occnl 

... 

0 0 0 

c or v 

c or v 

c or v  

c or v 

c or v 

...  

 

lmax 

rpaw rshape rvloc rcore 

y 

Eref 

n 

y 

Eref 

n 

... 

y 

Eref 

n 

projector_keyword ps_scheme ortho_scheme shapefunction 

lloc Eloc Vloc_scheme 

rc1 

rc2 

... 

rcbasis_size 

 

1 

n l occnl 

n l occnl 

... 

0 0 0 

 

2 

coreWF_keyword proj_optim_keyword comp_in_XC_keyword reduced_grid_keyword 

Atomic all-electrons 
computation 

Partial-waves basis 
generation 

Test configurations 

One line for each (n,l) state 
 

 l=0 states  first 
 then l=1 states… 

If projector_keyword  ”Bloechl” 
 

One line for each partial-wave 

As many times 
as desired 

Output for ABINIT 

One line for each empty or  
partially  occupied (n,l) state 

Repeated for each additional l=0 partial-wave 

One paragraph for 
each 0  l lmax 

Repeated for each additional l=1 partial-wave 

Repeated for each additional l=lmax partial-
wave 

Output for various codes 

One line for each empty or 
 partially occupied (n,l) state 

Output for PWscf 



 
  User’s guide for atompaw        5 

 

Detailed description of keywords 
 
 

1. Atomic all-electron computation 
 
 
Atom_name Z 

 
 
 
 
 
 
 
 
 
XC_functional rel_keyword nucleus_keyword grid_keyword gridsize rmax 
rmatch  

  
logderivrange Emin Emax Npoints  

 
 

Atom_name: 
 

Symbol of atomic specie 

Z: 
Atomic number (total number of electrons) 

XC_functional: 
 

Name of exchange-correlation functional used in 
DFT atomic configuration resolution 
 

Possible values: 
LDA-PW for Perdew-Wang (92) LDA functional 
[PRB 45, 13244 (1992)] 
 

GGA-PBE for Perdew-Burke-Ernzerhof (96) 
GGA functional  [PRL 77, 3865 (1996)] 
 

LibXC_keyword for use of one of the functionals 
provided by the LibXC external library 
(see appendix) 
 

rel_keyword: 
 

Relativistic approximation used to solve 
atomic wave equation 
 

Possible values: 
nonrelativistic: solve non-relativistic 
Schrödinger equation. 
 

scalarrelativistic:  solve scalar-relativistic 
wave equation (Koelling-Harmon-like 
equation).  [J.  Phys C 10, 3107 (1977)] 

 

Default (if missing) is nonrelativistic 

nucleus_keyword: 
 

Option governing the form of the potential near 
r0 during atomic wave equation resolution 
 

Possible values: 
point-nucleus: solve atomic wave equation, 
assuming point potential for r0 
(V(r)=-2Z/r). 
 

finite-nuclueus: solve atomic wave 
equation, assuming finite nucleus potential 
for r0 (V(r)=-2Z erf(r/RR)/r), where RR is 
a nuclear size parameter. 

 

Default (if missing) is point-nucleus 

See next page 
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grid_keyword gridsize rmax rmatch: 
 

Options governing the analytic form of the radial grid 
used in atompaw 
 

Analytical form of the grid is determined by grid_keyword Its step and size can 
be defined by gridsize, rmax and rmatch. 
 
 

Possible values for grid_keyword: 
 

lineargrid: use a linear grid : ri=h(i-1) 
  

loggrid: use a logarithmic grid : ri=(h/Z).(exp[h(i-1)]-1) 
loggridv4: use a logarithmic grid : ri=(r0/Z).(exp[h(i-1)]-1); with r0=10-5 

 

Default (if missing) is lineargrid 
 

Additional (optional) arguments: 
 

gridsize: 
Define the number of points in the grid. 
 

Default (if missing) is 20001 when grid is linear 
 2001 when grid is logarithmic 

rmax:  (atomic units) 

Optional argument, but if present must follow gridsize in the input. 
Define the maximum radius of the grid. 
 

Default (if missing) is 50. a.u. when grid is linear 
 80 a.u. when grid is logarithmic (loggrid) 
 100 a.u. when grid is logarithmic (loggridv4) 
 
 

rmatch:  (atomic units) 

Optional argument , but if present must follow rmax in the input. 
This changes the usage of gridsize so that the value of rmatch defines an 
explicit grid point by adjusting the step size (h) so that there are gridsize 
grid points between 0 and rmatch. 
A typical value for rmatch is the PAW radius, rpaw (in order to keep it constant 
when the grid size changes). The grid is then continued to the first point 
ri>=rmax. 
 

Default (if missing) is rmax 

 

These keywords should be on the same line as previous ones… 

logderivrange Emin Emax Npoints :  
 

 

Options governing the plotting of logarithmic derivative 
 

logderivrange is an optional argument. 
 

Additional (optional) arguments: 
 

Emin:  (Rydberg) 

Optional argument, but if present must follow logderivrange in the input. 
Define the minimum energy of the range used to plot logarithmic derivatives. 
 

Default (if missing) is -5.0 Rydberg 
 
Eaxn:  (Rydberg) 

Optional argument, but if present must follow Emin in the input. 
Define the maximum energy of the range used to plot logarithmic derivatives. 
 

Default (if missing) is 4.95 Rydberg 
 
Npoints: 

Optional argument, but if present must follow Emax in the input. 
Define the number of points (energies) used to plot logarithmic derivatives. 
 

Default (if missing) is 200 
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nsmax npmax ndmax nfmax ngmax 

 
 

 

 

 

 

 

 

n l occnl 

n l occnl 

... 

0 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

c or v 

c or v 

c or v  

c or v 

c or v 

...  

 

 
 

nlmax: 
Maximum n quantum number for l electrons 

 
Example: 
For Nickel (1s2 2s2 2p6 3s2 3p6 3d8 4s2), enter: 

 

4 3 3 0 0 

One line for each empty or 
partially  occupied (n,l) state 

For each electronic shell of the atomic species, enter a 
line with: 

n,l: quantum numbers of the shell 
occnl: electronic occupation of the shell 

 
Actually, only empty or partially occupied shells are 
needed; full shells can be omitted. 

 
Charged/excited configurations are (of course) accepted. 

 
A “0 0 0” (zero zero zero) line ends the configuration. 

 
Example: 

For excited Nickel (1s2 2s2 2p6 3s2 3p6 3d8.5 4s1.5), 
simply enter: 3 2 8.5 
 4 0 1.5 

One line for each (n,l) state 
 

 l=0 states  first 
 then l=1 states… 

c or v: 
Core or valence characteristic of electronic shell 
 

For each electronic shell, enter a c or v keyword, which can be: 
 

c: the electronic shell is a CORE shell, frozen around the nucleus and 
included in the core density of the PAW data set. 
 

v: the electronic shell is a VALENCE shell containing valence electrons 
included in the  PAW data set. In addition, note that the partial-wave 
associated with such a valence state will be NECESSARILY included in 
the PAW partial-waves basis (see below). 

 
Example: 
For Nickel (1s2 2s2 2p6 3s2 3p6 3d8 4s2), with 3p6 3d8 4s2 in the valence, enter: 
 c ! 1s 
 c ! 2s 
 c ! 3s 
 v ! 4s valence 
 c ! 2p 
 v ! 3p valence 
 v ! 3d valence 
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2. Partial-wave basis generation 
 
 
lmax 

 
 
 
 
rpaw rshape rvloc rcore 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

y 

Eref 

n 

y 

Eref 

n 

... 

y 

Eref 

n 

 

lmax: 
Maximum l quantum number for partial-
waves in PAW basis 

rpaw:  (atomic units) 

Radius of augmentation regions in PAW 
formalism 

rshape: (atomic units) 

Cut-off radius of shape functions gl(r) 
used in compensation density definition 
 

Default (if missing) is rpaw 

rvloc:  (atomic units) 

Matching radius used to get pseudo 
potential VPS(r)  from all-electron effective 
potential Vloc(r). 
 

Default (if missing) is rpaw 

rcore:  (atomic units) 

Matching radius used to get pseudo core 
density ñc(r) from atomic core density nc(r). 
 

Below rcore, pseudo core density has the 

form:     4
4

2
20

~ rUrUUrnc 
 

 

Default (if missing) is rpaw 

Repeated for each additional l=lmax partial-wave 

Repeated for each additional l=0 partial-wave 

Repeated for each additional l=1 partial-wave 
One paragraph for 

each 0  l lmax 

Definition of partial-waves basis elements: 
 

By construction, the basis already contains each atomic wave function 
associated with a valence state (each wave function marked as “v” in the 
atomic all-electron configuration). These are “bound states”. 

 

To add additional basis elements (“unbound states”), proceed as follow: 
 

For each l angular momentum (from 0 to lmax), 
1- Enter y to add an additional partial-wave 
2- Enter Eref (real number, Rydberg units), reference energy used to 
build the partial-wave. The later is obtained by inverting the 
Schrödinger equation at energy Eref and l angular momentum. 

 

Go to point 1- to add another partial-wave associated with l 
 Or 

Enter n 
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projector_keyword ps_scheme ortho_scheme shapefunction tol 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

projector_keyword: 
Option governing the scheme used to generate (smooth) PS partial-waves and associated projectors 
 

Possible values: 
Bloechl [or VNCT]: use P. Blöchl PS wave functions and projectors generation scheme  [PRB 50, 
17953 (1994)]: A cutoff-function k(r)=[sin(r/rpaw)/(r/rpaw)]2 is used (in a Schrödinger-like equation) 
to deduce PS partial-waves. Projectors are then orthogonalized with a Gram-Schmidt procedure. 
In that case, ps_scheme and ortho_scheme keywords are ignored. 

 

Vanderbilt [or VNCTV]: use a polynomial function to “pseudize” partial-waves and D. Vanderbilt 
projectors generation scheme  [PRB 41, 7892 (1990)]:The polynomial function used to “pseudize” 
partial-waves is identical as the one used when ps_scheme=polynom (see below) 
In that case, ps_scheme and ortho_scheme keywords are ignored. 

 

custom: get PS wave functions according to ps_scheme keyword (see below) and projectors according 
to ortho_scheme keyword (see below). 
 
modrrkj: use modified RRKJ form for wave function; can be used with vanderbiltortho, 
gramschmidtortho, or svdortho values for the ortho_scheme 

 

ortho_scheme: 
Option governing the scheme used to generate and orthogonalize 
projectors when projector_keyword=custom 
 

Possible values: 
gramschmidtortho: use a Gram-Schmidt –like procedure to 
orthogonalize projectors and PS partial-waves. 

 

vanderbiltortho: use D. Vanderbilt procedure to orthogonalize 
projectors and PS partial-waves (see [PRB 41, 7892 (1990)]). 

 

Default (if missing) is gramschmidtortho 

Note that: 
projector_keyword=vanderbilt is strictly equivalent to “custom polynom vanderbiltortho” 
 

projector_keyword=bloechl is equivalent to “custom bloechlps gramschmidtortho” 
AND all rc (defined later) equal to rpaw 

See next page 

ps_scheme: 
Option governing the scheme used to generate (smooth) PS partial-waves when projector_keyword=custom 
 
 

Possible values: 
bloechlps: use P. Bloechl PS wave functions and projectors generation scheme  [PRB 50, 17953 (1994)]: 
a cutoff-function k(r)=[sin(r/rc)/(r/rc)]2 is used (in a Schrödinger-like equation) to deduce PS partial-
waves.  In that case ortho_scheme keyword has to be gramschmidtortho. 

 

polynom: use a eighth degree polynomial function to “pseudize” partial-waves. 

Below matching radius, PS wave function has the form:   


 
4

0

21~

m

m
m

l
i rCrr

 

 

polynom2 p qcut: use a polynomial of degree 2p to “pseudize” partial-waves.  

Below matching radius, PS wave function has the form:   


 
p

m

m
m

l
i rCrr

0

21~  

For m4, Cm coefficients are computed so that to minimize Fourier coefficients 
of PS partial-wave for q>qcut (Fourier filtering). 
 

Defaults values of p and qcut (if missing) are:    p=4 ; qcut=10.0 
 

rrkj: use RRKJ scheme to get PS wave functions  [PRB 41, 1227 (1990)]. 
Below matching radius, PS wave function is a sum of 2 Bessel functions: 

      rqjrqjrr l
l

ll
l

l
i 2211

~    
 

Default (if missing) is bloechlps 
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lloc Eloc Vloc_scheme 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
rc1 

rc2 

... 

rcbasis_size 

 
 

shapefunction tol: 
Option governing the analytic form of shape functions gl(r) used in compensation density definition 
 

Can be: 

sinc:    rkrNrg l
l    with        2

///sin shapeshape rrrrrk   
   

 tol parameter is ignored and can be omitted 
 

gaussian tol:    rkrNrg l
l    with      2

/exp drrk   
 

d parameter is deduce so that k(rshape)=tol 
Default of tol parameter (if missing ) is 10-4 

 

besselshape:      rqjrqjrg l
l

l
l

l
1
22

1
11      (see [PRB 59, 1758 (1999)]) 

 

 tol parameter is ignored and can be omitted 
 

Default (if missing) is sinc 

 

Vloc_scheme: 
Option governing the scheme used to get VPS(r) (local) pseudopotential from all-electron 
effective potential Veff(r). Matching radius for pseudization is rvloc. 
 

Can be: 
troulliermartins: use a norm-conserving Troullier-Martins scheme. A PS wave 
function is deduce from atomic one and chosen to have the form 

    rprr loclPS exp1    for r<rvloc where p is an even 12th order polynomial. 
Then VPS is deduced by inverting the wave equation at l=lloc and E=Eloc. 
 

ultrasoft: use a  pseudization scheme without norm conservation constraint. A 
PS wave function is deduce from atomic one and chosen to have the form 

  


 
3

0

21

m

m
m

lPS rCrr loc  for r<rvloc. Then VPS is deduced by inverting the 

wave equation at l=lloc and E=Eloc. 
 

bessel: VPS is simply derived from Veff by a simple pseudization scheme using a 

zero-order spherical Bessel function:     
r

rq
rV PS 


sin

  for r<rvloc. 

In that case, lloc and Eloc are ignored and can be omitted. 
 

 

Default (if missing) is troulliermartins 
 

If Projector_keyword  ”Bloechl” 
 

One line for each partial-wave 

rci:  (atomic units) 

Matching radius used to get pseudo partial-waves  ri
~

 from partial-wave  ri . 
 

As many radii as partial-waves have to be entered (one per line). 
 

If projector_keyword is bloechl or VNCT, these radii DO NOT HAVE TO 
BE GIVEN. In that case, they all are taken as rc=rpaw. 

lloc Eloc: 
l quantum number and reference 
energy (Rydberg units) for use 
when 
Vloc_scheme=troulliermartins 
or 
Vloc_scheme=ultrasoft 
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3. Options for further exploring, testing, and outputing datasets 
After the basis and projector functions have been calculated, the program enters a keyword 
driven mode.    The keywords can be listed in any order.   Typically the user would choose to 
output the dataset in one or more formats (ABINITOUT, XMLOUT, PWSCFOUT, 
PWPAWOUT) or to try several different pseudopotential paprameters (EXPLORE) or test the 
given data set (SCFPAW).   The looping structure of the program is stopped with an “END” 
or “0” keyword. 
 

a. Test configurations 
 

After the arguments used to generate the PAW dataset, the user can give electronic test 
configurations in order to test the validity of the created PAW dataset. For each electronic 
configuration the PAW Hamiltonian will be solved and resulting states printed. 
 
Each test configuration has to be given as follow: 
 

1 

n l occnl 

n l occnl 

... 

0 0 0 

 
 
 

 
 
 
 
 
 
 
 
 
 
To end the list of configurations: 

 

Enter a line with 0 (zero) to finish the calculations: 
 

0 
 

 
 
 

Tests configurations are not mandatory and one can directly enter another 
integer value (0, 2, 3, or 4) or keyword without having given any 
configuration. 

  

One line for each empty or 
 partially occupied (n,l) state 

Enter 1 or SCFPAW 
to begin a new test 
configuration 

For each electronic shell of the atomic specie, enter a 
line with: 

n,l: quantum numbers of the shell 
occnl: electronic occupation of the shell 

 

Actually, only shells whose electronic occupation is 
different from the all-electron computation one are 
needed; other shells can be omitted. 
 

Charged/excited configurations are (of course) accepted. 
 

A “0 0 0” (zero zero zero) line ends the configuration. 
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b. Output for various DFT codes 
 

In the rest of the input file, the user can optionally ask atompaw to write the PAW dataset 
in a specific format for various DFT codes. In addition, it is possible to apply a specific 
treatment to data for these codes. 

 

ABINIT —  http://www.abinit.org 

 

To obtain a file formatted for abinit code, enter the following lines: 
 

2 
coreWF_keyword proj_optim_keyword comp_in_XC_keyword reduced_grid_keyword 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enter 2 or ABINITOUT to 
activate output in abinit 
format 

coreWF_keyword: 
 

Option for the printing of core wave-function 
 in a file formatted for abinit.  
 

Possible values: 
noprtcorewf: no additional printing 
 

prtcorewf:  print an additional file, named 
Atom_name.XCfunc-corewf.abinit 
containing core wave-functions in abinit 
format. 

 

Default (if missing) is noprtcorewf 

See next page 

reduced_grid_keyword gridsize logstep  
 

Option for the use of a reduced grid. 
 

This option in essentially useful when atompaw uses a linear grid, in order to reduce the grid 
size for the use in abinit. 
 

Possible values: 
nospline: no additional printing 
 

logspline: PAW dataset is transferred into a logarithmic grid (except non-local projectors). 
This gridgrid is defined by: r(i>1)=a.exp[b.(i-2)] and r(1)=0 ; The user has to give the size 
of the grid gridsize and the «logarithmic step» (b in the above formula) logstep. 
 

gridsize: 
Optional argument, but if present must follow logspline in the input. 
Define the size of the auxiliary logarithmic grid. 
 

Default (if missing) is 350 
 

logstep: 

Optional argument, but if present must follow gridsize in the input. 
Define the logarithmic step of the auxiliary logarithmic grid. 
Default (if missing) is 0.035 

 
 

Default (if missing) is nospline 

comp_in_XC_keyword: 
 

Option governing the use of compensation 
density in eXchange-Correlation potential.  
 

Possible values: 
noxcnhat: exchange-correlation potential 
does not include compensation density 
(Blöchl’s formalism). 
This choice is safer as it avoids numerical 
problems in XC terms calculation. 
Compatible with abinit v6.1+ 
 

usexcnhat:  exchange-correlation potential 
includes compensation density (Kresse’s 
formalism). 
This choice can produce numerical problems 
in XC calculation. 

 

For further explanation, see [Comp. Phys. 
Comm. 181, 1862 (2010)] 
 

Default (if missing) is noxcnhat 
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Output for ABINIT – continued… 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note: 
If you just want to produce a PAW dataset for abinit, without any additional data treatment, 
you can use the default keyword: 
 

2 
Default 

Or 

ABINITOUT 

Default 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

proj_optim_keyword ecut gfact werror: 
 

Option for the optimization of projectors  
 

Possible values: 
nooptim: no additional printing 
 

rsoptim:  optimize projectors using “Real Space Optimization”, as in [PRB 44, 13063 (1991)]. It 
tries to improve the development of non-local projectors by "smoothing" their development over 
large G vectors (introducing a "controlled" error). The scheme is governed by 3 parameters: Gmax,  
and Wl. The efficiency of Real Space Optimization strongly depends on the non-local projectors (it 
can sometimes be detrimental); only experienced users should use it. 
 

ecut: (Rydberg) 

Optional argument, but if present must follow rsoptim in the input. 
Define the cut-off energy (Ecut) used to optimize the projectors (Gmax=Ecut^2). 
 

Default (if missing) is 10. Rydberg 
 

gfact: 
Optional argument, but if present must follow ecut in the input. 
Define the factor /Gmax used to optimize the projectors. 
 

Default (if missing) is 2 
 

werror: 
Optional argument, but if present must follow gfact in the input. 
Define the error Wl  used to optimize the projectors. 
 

Default (if missing) is 0.0001 
 

 

Default (if missing) is nooptim 
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Quantum Expresso  —  http://www.pwscf.org 

 

To obtain a file formatted for PWscf code (Unified Pseudopotential Format), 
enter the following lines: 
 

3 
upfdx upfxmin upfzmesh 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note for the generation of PAW datasets in UPF format: 

The PWscf code uses the Kresse treatment [PRB 59, 1758 (1999)] of the exchange-correlation functional 
which can lead to inaccuracies as explained in [Comp. Phys. Comm. 181, 1862 (2010)]. To prevent these 
inaccuracies, we recommend using the BESSELSHAPE option for the compensation charge and choosing 
rshape = rpaw/1.2. 
For example, an input for Li including all electrons in the valence suitable for use with PWscf is as follows: 

 
 
 
 
 
 
 
 
 
 
 
 
 
Other output formats: 
4 or PWPAWOUT:   output dataset for use in pwpaw or Socorro codes 
5 or XMLOUT – output dataset in xml format 
 

c. “explore” mode of the program 
The EXPLORE (or 10) keyword puts allows the user to run the pseudofunction 
portion of the program multiple times to search for optimal parameter values.   See the 
ATOMPAW_Explore_Userguide.pdf for more details. 

Enter 3 or PWSCFOUT 
to activate output in 
UPF format 

UPF grid_keywords    (all are optional and may occur in any order) 
 
For the PAW mode, the pwscf code needs a logarithmic grid of the form: 
 

                    







 )(i-
eeir

1upfdxupfxmin
 

upfzmesh

1
)(   

upfzmesh: 
Optional argument. 
Define the inverse of the radial step of the grid.. 
 

Default (if missing) is  1.0 a.u. -1 
 

upfxmin: 
Optional argument. 
exp(upfxmin) is the minimum radius given by the grid (i=1). 
 

Default (if missing) is  -9.0 
 

upfdx: 
Optional argument. 
Define the logarithmic step of the grid. 
 

Default (if missing) is  0.005 

 

Li 3 
GGA-PBE loggrid 2001 
2 2 0 0 0 0 
2 1 0 
2 0 1 
0 0 0 
v 
v 
v 
1 
1.6    1.3    1.6    1.6 
n 
n 
vanderbilt  besselshape    
2 0 
1.4 
1.6 
1.6 
3 



 
  User’s guide for atompaw        15 

Examples 
 

 
A “minimal” input file 

 
Boron [1s2] 2s2 2p1 

4 partial-waves in basis 
 

B 5. 
LDA-PW 
2 2 0 0 0 
2 1 1.0 
0 0 0 
c 
v 
v    
1 
1.7 
y 
3. 
n 
y 
3. 
n 
vanderbilt 
2 0. 
1.5 
1.5 
1.7 
1.7 
2 
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A “complete” input file 
 

Nickel [1s2 2s2 2s6 3s2 3p6] 3d9 4s1 4p0 

6 partial-waves in basis 
 
 

Nickel 28. 

GGA-PBE  scalarrelativistic  point-nucleus  loggrid 1500 80. 2.3 loggderivrange -10. 10. 300 

4 4 3 0 0          ! Up to 4s, 4p and 3d 
1 0 2.0            ! Electronic configuration 3d9 4s1 4p0 

2 0 2.0 
2 1 6.0 
3 0 2.0 
3 1 6.0 
3 2 9.0 
4 0 1.0 
4 1 0.0 
0 0 0 
c                  ! 1s 
c                  ! 2s 
c                  ! 3s 
v                  ! 4s valence 
c                  ! 2p 
c                  ! 3p 
v                  ! 4p valence 
v                  ! 3d valence 
2                  ! Basis contains s, p and d partial-waves 
2.3 2.3 1.1 2.2    ! rpaw=2.3, rshape=2.3, rveff=1.1, rcore=2.2 
y                  ! Additional s partial-wave 
4.                 ! at Eref=4.0 Ry 
n 
y                  ! Additional p partial-wave 
4.                 ! at Eref=4.0 Ry 
n 
y                  ! Additional d partial-wave 
2.5                ! at Eref=2.5 Ry 
n 
custom rrkj gramschmidtortho sinc  ! RRKJ PW + sinc shape func. 
Bessel             ! Simple Bessel Vloc 
2.3                ! Matching radius for Phi1 (l=0) 
2.3                ! Matching radius for Phi2 (l=0) 
2.3                ! Matching radius for Phi3 (l=1) 
2.3                ! Matching radius for Phi4 (l=1) 
2.3                ! Matching radius for Phi5 (l=2) 
2.3                ! Matching radius for Phi6 (l=2) 
1 
1 0 2.0            ! Test configuration 3d8 4s2 

2 0 2.0 
2 1 6.0 
3 0 2.0 
3 1 6.0 
3 2 8.0 
4 0 2.0 
0 0 0 
2                                                              ! Output for abinit 
prtcorewf noxcnhat rsoptim 12. 2. 0.00001 logspline 500 0.03   ! abinit options 
3                                                              ! Output for PWscf 
upfdx 0.005  upfxmin -9.0  upfzmesh 1.0                        ! PWscf options 
0                  ! END 
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Advice for use 
 
 

In the following we give some keys for non-experienced users so that they can build 
input files for atompaw for new materials. 
 
 
 

Short write-up 
 

The first advice is to begin with a simple expression of the input file, setting most of the 
keywords to their default values. 
 

○ Concerning the all-electrons atomic computation, prefer a logarithmic grid; test the 
influence of the number of grid points and, in case of difficulties, choose a regular grid. 
Begin with a scalar-relativistic solution of the wave equation. If the system shows 
convergence problems, try non-relativistic choice (not recommended when Z becomes high). 

 
○ Concerning the partial-waves basis generation, simply begin with: 

- an unique radius rpaw 

- 2 partial-waves per l angular momentum (if rpaw is small enough, 1 wave per l may suffice) 

- “bloechl” choice for projector_keyword 
- a norm-conserving Troullier-Martins pseudopotential at lloc=lmax+1 and Eloc=0. 

 

This choice should give a “stable” PAW dataset with correct physical results ; but 
Blöchl’s scheme for projectors can produce “inefficient” datasets (in the sense that they 
may need  a large number of plane waves to converge the DFT calculation). To increase 
performance, choose the “vanderbilt” option for projector_keyword. The gain can 
be noticeable. But, generally, the best choice (for performance) would be “custom 
rrkj” projectors. 
 

○ Concerning the pseudopotential VPS(r), norm-conserving Troullier-Martins is generally 
the best choice but it can produce “ghost states” for d and f materials. If this happens, a 
simple “Bessel” pseudopotential can solve the problem. But, in the later case, one has 
to noticeably decrease the matching radius rvloc  (try 0.6*rpaw first).  

 
○ The other keywords in the input file can be adjusted (by experienced users) in order to 

obtain better results on physical properties (by comparison with all-electrons 
calculations)… 
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Detailed write-up 
 

 
Here is a proposal for using atompaw to build new PAW datasets (from scratch). The 
procedure detailed here should help the user to generate optimal datasets in most cases. 
 

 In a first stage, edit a simple input file for atompaw. 
 

○ In the all-electrons atomic computation part 

~ Define the material in the first line 

~ Choose the exchange-correlation functional (LDA-PW or GGA-PBE) and select a 
scalar-relativistic wave equation and a (2000 points) logarithmic grid (second line). 

“scalarrelativistic” is recommended for high Z materials 

~ Then define the electronic configuration; an excited configure may be useful if the 
PAW dataset is intended for use in a context where the material is charged (such as 
oxides). Although, in our experience, the results are not  
 highly dependent on the chosen electronic configuration. 

~ Select the core and valence electrons: in a first approach, select only electrons from 
outer shells. But, if particular thermo dynamical conditions are to be simulated, it is 
generally needed to include “semi-core states” in the set of valence electrons. Semi-
core states are generally needed with transition metal and rare-earth materials. 
There are also some cases (such as P) where physical conditions do not indicate a 
need for semi-core states, but the use of semi-core states are needed to avoid the 
appearance of the dreaded ghost states.    

Note that all wave functions designated as valence 
electrons will be used in the partial-wave basis. 

 
○ In the partial-waves basis generation part 

Begin with a simple scheme. Select most of the keywords at their default values. 

~ Enter only one matching radius (rpaw). Select it to be slightly less than half the inter-
atomic distance in the solid (as a first choice). 

~ Add additional partial-waves if needed: choose to have 2 partial-waves per angular 
momentum in the basis (this choice is not necessarily optimal but this is the most 
common one; if rpaw is small enough, 1 partial-wave per l may suffice). As a first 
guess, put all reference energies for additional partial-waves to 0 Rydberg. 

~ Select a “bloechl” projector scheme and a norm-conserving Troullier-Martins 
pseudopotential at lloc=lmax+1 and Eloc=0. “bloechl” will probably be changed 
later to make the PAW dataset more efficient. 

 
○ In the test configuration part 

~ Add one test configuration; a good idea is to test (at least) the electronic 
configuration used in the all-electrons atomic computation part. 

 
 

 At this stage, run atompaw ! 
 

The generated PAW dataset is a first draft. Several parameters have to be adjusted, in 
order to get accurate results and efficient DFT calculations. 
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1.   The sensitivity of results to some parameters has to be checked. 

○ The radial grid: 
Try to select 700 points in the logarithmic grid and check if any noticeable difference 
in the results appears. If yes, adjust the size of the grid (else, keep 700 points). If the 
results are difficult to get converged, try a regular grid… 

For use with the pwpaw code, linear or logarithmic grids can be used. 
For use with the abinit code, the logarithmic grid is preferred.  

○ The relativistic approximation of the wave equation: 
scalarrelativistic option should give better results than non-relativistic one, but 
it sometimes produces difficulties for the convergence of the atomic problem (either at 
the all-electrons resolution step or at the PAW Hamiltonian solution step). If 
convergence cannot be reached, try a nonrelativistic calculation (not 
recommended for high Z materials). 

○ A summary of the atomic all-electrons computation and the PAW dataset properties 
can be found in the Atom_name file (Atom_name is the first parameter of the input 
file). A look at the different values of evale (valence energy) is important. All-electron 
value has to be as close to others as possible. evale has to be insensitive to grids 
parameters. 

 
 
 
2.   Have a look at the partial-waves, PS partial-waves and projectors. 

Plot the wfn.i files in a graphical tool of your choice. You 

should get 3 curves per file:  ri ,  ri
~

 and  rpi
~

 

○ The  ri
~

 should meet the  ri  near or after the last maximum (or minimum). If not, 
it is preferable to change the value of the matching radius rci. 

○ The  ri
~

 and  rpi
~

 should have the same order of magnitude. If not, you can try to 
get this in three ways: 

- Change the matching radius rci for this partial-wave; but this is not always 
possible… spheres cannot have a large overlap in the solid… 

- Change the pseudopotential scheme (see later). 

- If there are two (or more) partial waves for the considered l angular momentum, 
including additional partial waves (unbound states): 
Decreasing the magnitude of projector is possible by displacing the references 
energies. Moving the energies away from each other generally reduce the 
magnitude of projectors, but a too big difference between energies can lead to 
wrong logarithmic derivatives (see following chapter). 

○ The two first values of evale (valence energy) in the Atom_name file have to be close. 
If not, choices for projectors and/or partial waves certainly are not judicious. 

○ Example of difficulty with  rpi
~

:  when the amplitude of projectors becomes too 
large, atompaw can produce an error with the following message: 

 

No convergence in boundsep 

Followed by 
Best guess of eig, dele = xxxxx   yyyyy 

 
 

This happens during the PAW Hamiltonian resolution (which cannot be achieved). One 
can bypass the difficulty by generating “softer” projectors as explained just above. 



 
  User’s guide for atompaw        20 

 
3.   Have a look at the logarithmic derivatives. 

They are printed in the logderiv.l files. Each logderiv.l file correspond to l 
quantum number and contains the logarithmic derivative of the l-state, 

    drEd l /log  , computed for exact atomic problem and with the PAW dataset. 

○ The 2 curves should be superimposed as much as possible.  By construction, they are 
superimposed at the two energies corresponding to the two l partial-waves. If the 
superimposition is not good enough, the reference energy for the second l partial-wave 
should be changed. 

○ Generally a discontinuity in the logarithmic derivative curve appears at 
0<=E0<=4 Rydberg. A reasonable choice is to choose the 2 reference energies so that 
E0 is in between (if possible, i.e. if one the 2 partial-waves correspond to an unbound state). 

○ Too close reference energies produce “hard” projector functions. But moving 
reference energies away from each other can damage accuracy of logarithmic 
derivatives. 

○ Another possible problem is the presence of a discontinuity in the PAW logarithmic 
derivative curve at an energy where the exact logarithmic derivative is continuous. 
This generally shows the presence of a “ghost state”. 

First, try to change to value of reference energies; this sometimes can make the ghost 
state disappear. 

If not, it can be useful to: 

- Change the pseudopotential scheme. Norm-conserving pseudopotentials are 
sometimes so deep (attractive near r=0) that they produce ghost states. A first 
solution is to change the l quantum number used to generate the norm-conserving 
pseudopotential. But this is generally not sufficient. Changing the pseudopotential 
scheme is (in most cases) the only efficient cure. 

Select a simple “bessel” pseudopotential can solve the problem. But, in that case, 
one has to noticeably decrease the matching radius rvloc  if one wants to keep 
reasonable physical results. Loosing to much norm for the wave function associated 
to the pseudopotential can have dramatic effects on the results. 

Selecting a value of rvloc between 0.6*rpaw and 0.8*rpaw is a good choice; but the 
best way to adjust rvloc value is to have a look at the two first values of evale in 
Atom_name file. They have to be as equal as possible and are sensitive to the 
choice of  rvloc. 

- Change the matching radius rci for one (or both) l partial-wave(s). In some cases, 
changing rci can remove ghost states … 

In most cases (changing pseudopotential or matching radius), one has to restart the 
procedure from step 2. (only for l partial-waves). 

 
 
 
4.   Now, one has to test the efficiency of the generated PAW dataset. 

Run a DFT computation and determine the size of the plane wave basis 
needed to get a given accuracy. If the cut-off energy defining the plane 
waves basis is too high (higher than 20 Hartree, if matching radius has a reasonable 

value), some changes have to be made in the input file. 
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○ First possibility: change projector_keyword=“bloechl” by 
projector_keyword=”vanderbilt”. Vanderbilt projectors generally are more 
localized in reciprocal space than Bloechl  ones. 

Recheck the plane waves cut-off (in a DFT calculation)… it 
should have decrease (but this is not a general rule). 

○ Second possibility: use RRKJ pseudization for PS partial-waves (put 
projector_keyword=”custom” and ps_keyword=”rrkj”). This pseudization is 
particularly efficient and gives highly localized projectors (in reciprocal space). This 
choice has, in most cases, the best influence on the plane wave basis. 

One has to note that: 

~ The localization of projectors in reciprocal space can (generally) be predicted by a 

look at tprod.i files. Such a file contains the curve of    qqpq ii ~~2   as a function 
of q (reciprocal space variable). q is given in Bohr-1 units; it can be connected to the 

plane waves cut-off energy (in Hartree units) by: 2/2
cutcut qE  .  These quantities are 

only calculated for the bound states, since the Fourier transform of an extended 
function is not well-defined. 

~ Generating projectors with Blöchl’s scheme often gives the guaranty to have stable 
calculations. atompaw ends without any convergence problem and DFT calculations 
run without any divergence (but they need high plane wave cut-off). Vanderbilt 
projectors (and even more “custom” projectors) sometimes produce instabilities 
during the PAW dataset generation process and/or the DFT calculations… 
 

In most cases, after having changed the projector generation scheme, one has to 
restart the procedure from step 2. 

 
 
 
5.   Finally, have a careful look at physical quantities obtained with the PAW dataset. 

It can be useful to test their sensitivity to some input parameters: 

- The analytical form and the cut-off radius rshape of the shape function used in 
compensation charge density definition. By default a “sinc” function is used but 
“gaussian” shapes can have an influence on results. “Bessel” shapes are efficient 
and generally need a smaller cut-off radius (~0.8*rpaw). 

- The matching radius rcore used to get pseudo core density from atomic core density. 

- The integration of additional (“semi-core”) states in the set of valence electrons. 

- The pseudization scheme used to get VPS(r). 

All these parameters have to be meticulously checked, especially if the PAW dataset is 
used for non-standard solid structures or thermo dynamical domains. 
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Appendix 
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Appendix A: use of LibXC library 
 

LibXC is a library (available from the web) under GNU-LGPL written by M. Marques, 
that contains a large set of very varied exchange-correlations functionals.  
Provided that it is linked to LibXC library, atompaw can use these exchange-correlation 
functionals (at present only LDA and GGA). 

Note : at present, only abinit code can use LibXC functionals. 
 
LibXC is available at : http://www.tddft.org/programs/octopus/wiki/index.php/Libxc 
 

How to build atompaw with LibXC support 
 
 Download LibXC tarball from 

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:download 
 

 Build LibXC and install it with the standard Linux procedure (see LibXC manual) : 
./configure ; make ; make install 
 

Let’s suppose in the following that LibXC is installed in ~libxc 
 

 Build atompaw with LibXC support 
At configure process, add the following options: 
 --enable-libxc --with-libxc-incs=”-I~libxc/include” \ 
 --with-libxc-libs=”-L~libxc/lib -lxc” 

Then build and install atompaw : 
make ; make install 

 
 

How to use atompaw with a LibXC functional 
 

 Choose an Exchange functional and a Correlation functional, or directly one single 
Exchange-Correlation functional, in LibXC list: 

  

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:manual#Available_functionals 
 

 If your choice is an Exchange-Correlation functional, put its name as XC_functional 
keyword in atompaw input file. 

 

If your choice is an Exchange and a Correlation functional, put the XC_functional 
keyword as a merge of the two names separated by a ”+” (plus). 
 

Examples: if you want to use XC_GGA_XC_B97, put: XC_GGA_XC_B97 
if you want to use XC_LDA_X and XC_LDA_C_PW, put: XC_LDA_X+XC_LDA_C_PW 

 
 

Example of input file using LibXC (GGA-PBE functional): 
 
 
 
 
 
 
 
 
 
 

 
Note for experts: you also can address LibXC functionals in input file by their numerical identifier: 

XC_functional =  LIBXC_101+LIBXC_130 

B 5. 
XC_GGA_X_PBE+XC_GGA_C_PBE loggrid 2001 
2 2 0 0 0 

2 1 1.0 

0 0 0 
c 

v 

v    
1 
1.7 

y 
3. 

n 
y 

3. 
n 
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Appendix B: comparison between DFT codes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of the illustrated atompaw input file result in nearly identical results among the 3 
PAW codes pwpaw, abinit, and PWscf  and with the all-electron code WIEN2k which uses 
the LAPW method as shown in the following binding energy curve: 
 

 

Li 3 
GGA-PBE loggrid 2001 
2 2 0 0 0 0 
2 1 0 
2 0 1 
0 0 0 
v 
v 
v 
1 
1.6    1.3    1.6    1.6 
n 
n 
vanderbilt  besselshape    
2 0 
1.4 
1.6 
1.6 
2 
default 
3 
upfdx 0.005  upfxmin -9.0  upfzmesh 1.0 


