

 User’s guide for atompaw 1

A user’s guide for atompaw code

Marc Torrent
Commissariat à l’Energie Atomique et aux Energies Alternatives

DAM, DIF. F-91297 Arpajon - France

Natalie A. W. Holzwarth
Wake Forest University. Winston-Salem, NC 27109 - USA

Contact emails : marc.torrent@cea.fr, natalie@wfu.edu
Source code URL : http://pwpaw.wfu.edu

Revised August 2, 2013

Compatible with atompaw v4.0 and later

METHOD FOR PAW DATASET GENERATION .. 2

HOW TO USE ATOMPAW .. 3

INPUT FILE FOR ATOMPAW ... 4

DETAILED DESCRIPTION OF KEYWORDS ... 5

1. Atomic all-electron computation ... 5

2. Partial-wave basis generation .. 8

3. Test configurations .. 11

4. Output for various DFT codes ... 12
ABINIT — http://www.abinit.org .. 12
Quantum Expresso — http://www.pwscf.org .. 14

EXAMPLES .. 15

ADVICE FOR USE ... 17

Short write-up ... 17

Detailed write-up .. 18

APPENDIX ... 22

Appendix A: use of LibXC library ... 23

Appendix B: comparison between DFT codes ... 24

 User’s guide for atompaw 2

Method for PAW dataset generation

PAW calculations require, for each atomic species, a set of basis (partial-waves) and

projectors functions plus some additional atomic data stored in a PAW dataset. A PAW

dataset has to be generated in order to reproduce atomic behavior as accurately as possible

while requiring minimal CPU and memory resources in executing the DFT code for the

crystal simulations. These two constraints are conflicting.

The PAW dataset generation is done according the following procedure:

All parameters that should be given in an atompaw input file are in bold.

1- Choose and define the concerned chemical species: name and atomic number.

2- Solve the atomic all-electrons problem in a given atomic configuration. The atomic

problem is solved within the DFT formalism, using an exchange-correlation

functional and either a Schrödinger (default) or scalar-relativistic approximation. It is

a spherical problem and it is solved on a radial grid. Other approximations can be

given (as, for example, the behavior of the nuclear potential). The atomic problem is

solved for a given electronic configuration that can be an ionized/excited one.

3- Choose a set of electrons that will be considered as frozen around the nucleus (core

electrons). The others electrons are valence ones and will be used in the PAW basis.

The core density is then deduced from the core electrons wave functions. A smooth

core density equal to the core density outside a given rcore matching radius is

computed.

4- Choose the size of the PAW basis (number of partial-waves and projectors). Then

choose the partial-waves included in the basis. The later can be atomic eigen-functions

related to valence electrons (bound states) in fact this is mandatory with atompaw

and/or additional atomic functions, solution of the wave equation for a given l

quantum number at arbitrary reference energies (unbound states).

5- Generate pseudo partial-waves (smooth partial-waves build with a pseudization

scheme and equal to partial-waves outside a given rc matching radius) and associated

projector functions. Pseudo partial-waves are solutions of the PAW Hamiltonian

deduced from the atomic Hamiltonian by pseudizing the effective potential (a local

pseudopotential is built and equal to effective potential outside a rvloc matching

radius). Projectors and partial-waves are then orthogonalized with a chosen

orthogonalization scheme.

6- Build a compensation charge density used later in order to retrieve the total charge of

the atom. This compensation charge density is located inside the PAW spheres and

based on an analytical shape function (which analytic form and localization radius

rshape can be chosen).

7- Eventually, if desired, test the resulting PAW dataset on several electronic test

configurations.

 User’s guide for atompaw 3

How to use atompaw

1- Compile atompaw:
atompaw uses the standard Linux installation procedure (autoconf) …

o In atompaw source tree, type: mkdir build ; cd build
 ../configure

If the configure script complains, add additional options:
FC=… to select a specific Fortran compiler
--prefix=”…” to specify the destination directory
--with-linalg-libs=”…” to select your Blas/Lapack libraries
--enable-libxc --with-libxc-incs=” ” --with-libxc-libs=” ” to add LibXC support (see appendix)

configure --help for all available options…

o Then compile and install the code: make ; make install

2- Edit an input file in a text editor (content of input is explained in the following).

3- Run atompaw: atompaw < inputfile

Partial-waves, PS partial-waves and projectors are given in wfn.i files.

Logarithmic derivatives from atomic Hamiltonian and PAW Hamiltonian resolutions
are given in logderiv.l files.

A summary of the atomic all-electrons computation and PAW dataset properties can be
found in the Atom_name file (Atom_name is the first parameter of the input file).

Resulting PAW dataset can be output in several different formats:

○ Atom_name.atomicdata file (keyword: PWPAWOUT)

Specific format for pwpaw, and soccoro codes

○ Atom_name.XCfunc.xml file (keyword: XMLOUT)

Normalized xml file according to specifications from
http://wiki.fysik.dtu.dk/stuff//pawxml/pawxml.xhtml; can be used with abinit
code

○ Atom_name.XCfunc-paw.abinit file (keyword: ABINITOUT)

Specific format for abinit code

○ Atom_name.XCfunc-paw.upf file (keyword: PWSCFOUT)

Specific format for pwscf code

Additional details can be found in:

- “Notes for revised form of atompaw code”
http://www.wfu.edu/~natalie/papers/pwpaw/notes/atompaw/atompawEqns.pdf

- “Part I manuscript.pdf”
http://dx.doi.org/10.1016/S0010-4655(00)00244-7
(be careful: some obsolete chapters inside).

 User’s guide for atompaw 4

Input file for atompaw
In red, mandatory arguments
In green, optional arguments

Keywords are in normal font
Numbers are in italics

Atom_name Z

XC_functional rel_keyword nucleus_keyword grid_keyword logderivrange

nsmax npmax ndmax nfmax ngmax

n l occnl

n l occnl

...

0 0 0

c or v

c or v

c or v

c or v

c or v

...

lmax

rpaw rshape rvloc rcore

y

Eref

n

y

Eref

n

...

y

Eref

n

projector_keyword ps_scheme ortho_scheme shapefunction

lloc Eloc Vloc_scheme

rc1

rc2

...

rcbasis_size

1

n l occnl

n l occnl

...

0 0 0

2

coreWF_keyword proj_optim_keyword comp_in_XC_keyword reduced_grid_keyword

Atomic all-electrons
computation

Partial-waves basis
generation

Test configurations

One line for each (n,l) state

 l=0 states first
 then l=1 states…

If projector_keyword ”Bloechl”

One line for each partial-wave

As many times
as desired

Output for ABINIT

One line for each empty or
partially occupied (n,l) state

Repeated for each additional l=0 partial-wave

One paragraph for
each 0 l lmax

Repeated for each additional l=1 partial-wave

Repeated for each additional l=lmax partial-
wave

Output for various codes

One line for each empty or
 partially occupied (n,l) state

Output for PWscf

 User’s guide for atompaw 5

Detailed description of keywords

1. Atomic all-electron computation

Atom_name Z

XC_functional rel_keyword nucleus_keyword grid_keyword gridsize rmax
rmatch

logderivrange Emin Emax Npoints

Atom_name:

Symbol of atomic specie

Z:
Atomic number (total number of electrons)

XC_functional:

Name of exchange-correlation functional used in
DFT atomic configuration resolution

Possible values:
LDA-PW for Perdew-Wang (92) LDA functional
[PRB 45, 13244 (1992)]

GGA-PBE for Perdew-Burke-Ernzerhof (96)
GGA functional [PRL 77, 3865 (1996)]

LibXC_keyword for use of one of the functionals
provided by the LibXC external library
(see appendix)

rel_keyword:

Relativistic approximation used to solve
atomic wave equation

Possible values:
nonrelativistic: solve non-relativistic
Schrödinger equation.

scalarrelativistic: solve scalar-relativistic
wave equation (Koelling-Harmon-like
equation). [J. Phys C 10, 3107 (1977)]

Default (if missing) is nonrelativistic

nucleus_keyword:

Option governing the form of the potential near
r0 during atomic wave equation resolution

Possible values:
point-nucleus: solve atomic wave equation,
assuming point potential for r0
(V(r)=-2Z/r).

finite-nuclueus: solve atomic wave
equation, assuming finite nucleus potential
for r0 (V(r)=-2Z erf(r/RR)/r), where RR is
a nuclear size parameter.

Default (if missing) is point-nucleus

See next page

 User’s guide for atompaw 6

grid_keyword gridsize rmax rmatch:

Options governing the analytic form of the radial grid
used in atompaw

Analytical form of the grid is determined by grid_keyword Its step and size can
be defined by gridsize, rmax and rmatch.

Possible values for grid_keyword:

lineargrid: use a linear grid : ri=h(i-1)

loggrid: use a logarithmic grid : ri=(h/Z).(exp[h(i-1)]-1)
loggridv4: use a logarithmic grid : ri=(r0/Z).(exp[h(i-1)]-1); with r0=10-5

Default (if missing) is lineargrid

Additional (optional) arguments:

gridsize:
Define the number of points in the grid.

Default (if missing) is 20001 when grid is linear
 2001 when grid is logarithmic

rmax: (atomic units)

Optional argument, but if present must follow gridsize in the input.
Define the maximum radius of the grid.

Default (if missing) is 50. a.u. when grid is linear
 80 a.u. when grid is logarithmic (loggrid)
 100 a.u. when grid is logarithmic (loggridv4)

rmatch: (atomic units)

Optional argument , but if present must follow rmax in the input.
This changes the usage of gridsize so that the value of rmatch defines an
explicit grid point by adjusting the step size (h) so that there are gridsize
grid points between 0 and rmatch.
A typical value for rmatch is the PAW radius, rpaw (in order to keep it constant
when the grid size changes). The grid is then continued to the first point
ri>=rmax.

Default (if missing) is rmax

These keywords should be on the same line as previous ones…

logderivrange Emin Emax Npoints :

Options governing the plotting of logarithmic derivative

logderivrange is an optional argument.

Additional (optional) arguments:

Emin: (Rydberg)

Optional argument, but if present must follow logderivrange in the input.
Define the minimum energy of the range used to plot logarithmic derivatives.

Default (if missing) is -5.0 Rydberg

Eaxn: (Rydberg)

Optional argument, but if present must follow Emin in the input.
Define the maximum energy of the range used to plot logarithmic derivatives.

Default (if missing) is 4.95 Rydberg

Npoints:

Optional argument, but if present must follow Emax in the input.
Define the number of points (energies) used to plot logarithmic derivatives.

Default (if missing) is 200

 User’s guide for atompaw 7

nsmax npmax ndmax nfmax ngmax

n l occnl

n l occnl

...

0 0 0

c or v

c or v

c or v

c or v

c or v

...

nlmax:
Maximum n quantum number for l electrons

Example:
For Nickel (1s2 2s2 2p6 3s2 3p6 3d8 4s2), enter:

4 3 3 0 0

One line for each empty or
partially occupied (n,l) state

For each electronic shell of the atomic species, enter a
line with:

n,l: quantum numbers of the shell
occnl: electronic occupation of the shell

Actually, only empty or partially occupied shells are
needed; full shells can be omitted.

Charged/excited configurations are (of course) accepted.

A “0 0 0” (zero zero zero) line ends the configuration.

Example:

For excited Nickel (1s2 2s2 2p6 3s2 3p6 3d8.5 4s1.5),
simply enter: 3 2 8.5
 4 0 1.5

One line for each (n,l) state

 l=0 states first
 then l=1 states…

c or v:
Core or valence characteristic of electronic shell

For each electronic shell, enter a c or v keyword, which can be:

c: the electronic shell is a CORE shell, frozen around the nucleus and
included in the core density of the PAW data set.

v: the electronic shell is a VALENCE shell containing valence electrons
included in the PAW data set. In addition, note that the partial-wave
associated with such a valence state will be NECESSARILY included in
the PAW partial-waves basis (see below).

Example:
For Nickel (1s2 2s2 2p6 3s2 3p6 3d8 4s2), with 3p6 3d8 4s2 in the valence, enter:
 c ! 1s
 c ! 2s
 c ! 3s
 v ! 4s valence
 c ! 2p
 v ! 3p valence
 v ! 3d valence

 User’s guide for atompaw 8

2. Partial-wave basis generation

lmax

rpaw rshape rvloc rcore

y

Eref

n

y

Eref

n

...

y

Eref

n

lmax:
Maximum l quantum number for partial-
waves in PAW basis

rpaw: (atomic units)

Radius of augmentation regions in PAW
formalism

rshape: (atomic units)

Cut-off radius of shape functions gl(r)
used in compensation density definition

Default (if missing) is rpaw

rvloc: (atomic units)

Matching radius used to get pseudo
potential VPS(r) from all-electron effective
potential Vloc(r).

Default (if missing) is rpaw

rcore: (atomic units)

Matching radius used to get pseudo core
density ñc(r) from atomic core density nc(r).

Below rcore, pseudo core density has the

form: 4
4

2
20

~ rUrUUrnc

Default (if missing) is rpaw

Repeated for each additional l=lmax partial-wave

Repeated for each additional l=0 partial-wave

Repeated for each additional l=1 partial-wave
One paragraph for

each 0 l lmax

Definition of partial-waves basis elements:

By construction, the basis already contains each atomic wave function
associated with a valence state (each wave function marked as “v” in the
atomic all-electron configuration). These are “bound states”.

To add additional basis elements (“unbound states”), proceed as follow:

For each l angular momentum (from 0 to lmax),
1- Enter y to add an additional partial-wave
2- Enter Eref (real number, Rydberg units), reference energy used to
build the partial-wave. The later is obtained by inverting the
Schrödinger equation at energy Eref and l angular momentum.

Go to point 1- to add another partial-wave associated with l
 Or

Enter n

 User’s guide for atompaw 9

projector_keyword ps_scheme ortho_scheme shapefunction tol

projector_keyword:
Option governing the scheme used to generate (smooth) PS partial-waves and associated projectors

Possible values:
Bloechl [or VNCT]: use P. Blöchl PS wave functions and projectors generation scheme [PRB 50,
17953 (1994)]: A cutoff-function k(r)=[sin(r/rpaw)/(r/rpaw)]2 is used (in a Schrödinger-like equation)
to deduce PS partial-waves. Projectors are then orthogonalized with a Gram-Schmidt procedure.
In that case, ps_scheme and ortho_scheme keywords are ignored.

Vanderbilt [or VNCTV]: use a polynomial function to “pseudize” partial-waves and D. Vanderbilt
projectors generation scheme [PRB 41, 7892 (1990)]:The polynomial function used to “pseudize”
partial-waves is identical as the one used when ps_scheme=polynom (see below)
In that case, ps_scheme and ortho_scheme keywords are ignored.

custom: get PS wave functions according to ps_scheme keyword (see below) and projectors according
to ortho_scheme keyword (see below).

modrrkj: use modified RRKJ form for wave function; can be used with vanderbiltortho,
gramschmidtortho, or svdortho values for the ortho_scheme

ortho_scheme:
Option governing the scheme used to generate and orthogonalize
projectors when projector_keyword=custom

Possible values:
gramschmidtortho: use a Gram-Schmidt –like procedure to
orthogonalize projectors and PS partial-waves.

vanderbiltortho: use D. Vanderbilt procedure to orthogonalize
projectors and PS partial-waves (see [PRB 41, 7892 (1990)]).

Default (if missing) is gramschmidtortho

Note that:
projector_keyword=vanderbilt is strictly equivalent to “custom polynom vanderbiltortho”

projector_keyword=bloechl is equivalent to “custom bloechlps gramschmidtortho”
AND all rc (defined later) equal to rpaw

See next page

ps_scheme:
Option governing the scheme used to generate (smooth) PS partial-waves when projector_keyword=custom

Possible values:
bloechlps: use P. Bloechl PS wave functions and projectors generation scheme [PRB 50, 17953 (1994)]:
a cutoff-function k(r)=[sin(r/rc)/(r/rc)]2 is used (in a Schrödinger-like equation) to deduce PS partial-
waves. In that case ortho_scheme keyword has to be gramschmidtortho.

polynom: use a eighth degree polynomial function to “pseudize” partial-waves.

Below matching radius, PS wave function has the form:

4

0

21~

m

m
m

l
i rCrr

polynom2 p qcut: use a polynomial of degree 2p to “pseudize” partial-waves.

Below matching radius, PS wave function has the form:

p

m

m
m

l
i rCrr

0

21~

For m4, Cm coefficients are computed so that to minimize Fourier coefficients
of PS partial-wave for q>qcut (Fourier filtering).

Defaults values of p and qcut (if missing) are: p=4 ; qcut=10.0

rrkj: use RRKJ scheme to get PS wave functions [PRB 41, 1227 (1990)].
Below matching radius, PS wave function is a sum of 2 Bessel functions:

 rqjrqjrr l
l

ll
l

l
i 2211

~

Default (if missing) is bloechlps

 User’s guide for atompaw 10

lloc Eloc Vloc_scheme

rc1

rc2

...

rcbasis_size

shapefunction tol:
Option governing the analytic form of shape functions gl(r) used in compensation density definition

Can be:

sinc: rkrNrg l
l with 2

///sin shapeshape rrrrrk

 tol parameter is ignored and can be omitted

gaussian tol: rkrNrg l
l with 2

/exp drrk

d parameter is deduce so that k(rshape)=tol
Default of tol parameter (if missing) is 10-4

besselshape: rqjrqjrg l
l

l
l

l
1
22

1
11 (see [PRB 59, 1758 (1999)])

 tol parameter is ignored and can be omitted

Default (if missing) is sinc

Vloc_scheme:
Option governing the scheme used to get VPS(r) (local) pseudopotential from all-electron
effective potential Veff(r). Matching radius for pseudization is rvloc.

Can be:
troulliermartins: use a norm-conserving Troullier-Martins scheme. A PS wave
function is deduce from atomic one and chosen to have the form

 rprr loclPS exp1 for r<rvloc where p is an even 12th order polynomial.
Then VPS is deduced by inverting the wave equation at l=lloc and E=Eloc.

ultrasoft: use a pseudization scheme without norm conservation constraint. A
PS wave function is deduce from atomic one and chosen to have the form

3

0

21

m

m
m

lPS rCrr loc for r<rvloc. Then VPS is deduced by inverting the

wave equation at l=lloc and E=Eloc.

bessel: VPS is simply derived from Veff by a simple pseudization scheme using a

zero-order spherical Bessel function:
r

rq
rV PS

sin

 for r<rvloc.

In that case, lloc and Eloc are ignored and can be omitted.

Default (if missing) is troulliermartins

If Projector_keyword ”Bloechl”

One line for each partial-wave

rci: (atomic units)

Matching radius used to get pseudo partial-waves ri
~

 from partial-wave ri .

As many radii as partial-waves have to be entered (one per line).

If projector_keyword is bloechl or VNCT, these radii DO NOT HAVE TO
BE GIVEN. In that case, they all are taken as rc=rpaw.

lloc Eloc:
l quantum number and reference
energy (Rydberg units) for use
when
Vloc_scheme=troulliermartins
or
Vloc_scheme=ultrasoft

 User’s guide for atompaw 11

3. Options for further exploring, testing, and outputing datasets
After the basis and projector functions have been calculated, the program enters a keyword
driven mode. The keywords can be listed in any order. Typically the user would choose to
output the dataset in one or more formats (ABINITOUT, XMLOUT, PWSCFOUT,
PWPAWOUT) or to try several different pseudopotential paprameters (EXPLORE) or test the
given data set (SCFPAW). The looping structure of the program is stopped with an “END”
or “0” keyword.

a. Test configurations

After the arguments used to generate the PAW dataset, the user can give electronic test
configurations in order to test the validity of the created PAW dataset. For each electronic
configuration the PAW Hamiltonian will be solved and resulting states printed.

Each test configuration has to be given as follow:

1

n l occnl

n l occnl

...

0 0 0

To end the list of configurations:

Enter a line with 0 (zero) to finish the calculations:

0

Tests configurations are not mandatory and one can directly enter another
integer value (0, 2, 3, or 4) or keyword without having given any
configuration.

One line for each empty or
 partially occupied (n,l) state

Enter 1 or SCFPAW
to begin a new test
configuration

For each electronic shell of the atomic specie, enter a
line with:

n,l: quantum numbers of the shell
occnl: electronic occupation of the shell

Actually, only shells whose electronic occupation is
different from the all-electron computation one are
needed; other shells can be omitted.

Charged/excited configurations are (of course) accepted.

A “0 0 0” (zero zero zero) line ends the configuration.

 User’s guide for atompaw 12

b. Output for various DFT codes

In the rest of the input file, the user can optionally ask atompaw to write the PAW dataset
in a specific format for various DFT codes. In addition, it is possible to apply a specific
treatment to data for these codes.

ABINIT — http://www.abinit.org

To obtain a file formatted for abinit code, enter the following lines:

2
coreWF_keyword proj_optim_keyword comp_in_XC_keyword reduced_grid_keyword

Enter 2 or ABINITOUT to
activate output in abinit
format

coreWF_keyword:

Option for the printing of core wave-function
 in a file formatted for abinit.

Possible values:
noprtcorewf: no additional printing

prtcorewf: print an additional file, named
Atom_name.XCfunc-corewf.abinit
containing core wave-functions in abinit
format.

Default (if missing) is noprtcorewf

See next page

reduced_grid_keyword gridsize logstep

Option for the use of a reduced grid.

This option in essentially useful when atompaw uses a linear grid, in order to reduce the grid
size for the use in abinit.

Possible values:
nospline: no additional printing

logspline: PAW dataset is transferred into a logarithmic grid (except non-local projectors).
This gridgrid is defined by: r(i>1)=a.exp[b.(i-2)] and r(1)=0 ; The user has to give the size
of the grid gridsize and the «logarithmic step» (b in the above formula) logstep.

gridsize:
Optional argument, but if present must follow logspline in the input.
Define the size of the auxiliary logarithmic grid.

Default (if missing) is 350

logstep:

Optional argument, but if present must follow gridsize in the input.
Define the logarithmic step of the auxiliary logarithmic grid.
Default (if missing) is 0.035

Default (if missing) is nospline

comp_in_XC_keyword:

Option governing the use of compensation
density in eXchange-Correlation potential.

Possible values:
noxcnhat: exchange-correlation potential
does not include compensation density
(Blöchl’s formalism).
This choice is safer as it avoids numerical
problems in XC terms calculation.
Compatible with abinit v6.1+

usexcnhat: exchange-correlation potential
includes compensation density (Kresse’s
formalism).
This choice can produce numerical problems
in XC calculation.

For further explanation, see [Comp. Phys.
Comm. 181, 1862 (2010)]

Default (if missing) is noxcnhat

 User’s guide for atompaw 13

Output for ABINIT – continued…

Note:
If you just want to produce a PAW dataset for abinit, without any additional data treatment,
you can use the default keyword:

2
Default

Or

ABINITOUT

Default

proj_optim_keyword ecut gfact werror:

Option for the optimization of projectors

Possible values:
nooptim: no additional printing

rsoptim: optimize projectors using “Real Space Optimization”, as in [PRB 44, 13063 (1991)]. It
tries to improve the development of non-local projectors by "smoothing" their development over
large G vectors (introducing a "controlled" error). The scheme is governed by 3 parameters: Gmax,
and Wl. The efficiency of Real Space Optimization strongly depends on the non-local projectors (it
can sometimes be detrimental); only experienced users should use it.

ecut: (Rydberg)

Optional argument, but if present must follow rsoptim in the input.
Define the cut-off energy (Ecut) used to optimize the projectors (Gmax=Ecut^2).

Default (if missing) is 10. Rydberg

gfact:
Optional argument, but if present must follow ecut in the input.
Define the factor /Gmax used to optimize the projectors.

Default (if missing) is 2

werror:
Optional argument, but if present must follow gfact in the input.
Define the error Wl used to optimize the projectors.

Default (if missing) is 0.0001

Default (if missing) is nooptim

 User’s guide for atompaw 14

Quantum Expresso — http://www.pwscf.org

To obtain a file formatted for PWscf code (Unified Pseudopotential Format),
enter the following lines:

3
upfdx upfxmin upfzmesh

Note for the generation of PAW datasets in UPF format:

The PWscf code uses the Kresse treatment [PRB 59, 1758 (1999)] of the exchange-correlation functional
which can lead to inaccuracies as explained in [Comp. Phys. Comm. 181, 1862 (2010)]. To prevent these
inaccuracies, we recommend using the BESSELSHAPE option for the compensation charge and choosing
rshape = rpaw/1.2.
For example, an input for Li including all electrons in the valence suitable for use with PWscf is as follows:

Other output formats:
4 or PWPAWOUT: output dataset for use in pwpaw or Socorro codes
5 or XMLOUT – output dataset in xml format

c. “explore” mode of the program
The EXPLORE (or 10) keyword puts allows the user to run the pseudofunction
portion of the program multiple times to search for optimal parameter values. See the
ATOMPAW_Explore_Userguide.pdf for more details.

Enter 3 or PWSCFOUT
to activate output in
UPF format

UPF grid_keywords (all are optional and may occur in any order)

For the PAW mode, the pwscf code needs a logarithmic grid of the form:

)(i-
eeir

1upfdxupfxmin

upfzmesh

1
)(

upfzmesh:
Optional argument.
Define the inverse of the radial step of the grid..

Default (if missing) is 1.0 a.u. -1

upfxmin:
Optional argument.
exp(upfxmin) is the minimum radius given by the grid (i=1).

Default (if missing) is -9.0

upfdx:
Optional argument.
Define the logarithmic step of the grid.

Default (if missing) is 0.005

Li 3
GGA-PBE loggrid 2001
2 2 0 0 0 0
2 1 0
2 0 1
0 0 0
v
v
v
1
1.6 1.3 1.6 1.6
n
n
vanderbilt besselshape
2 0
1.4
1.6
1.6
3

 User’s guide for atompaw 15

Examples

A “minimal” input file

Boron [1s2] 2s2 2p1

4 partial-waves in basis

B 5.
LDA-PW
2 2 0 0 0
2 1 1.0
0 0 0
c
v
v
1
1.7
y
3.
n
y
3.
n
vanderbilt
2 0.
1.5
1.5
1.7
1.7
2

 User’s guide for atompaw 16

A “complete” input file

Nickel [1s2 2s2 2s6 3s2 3p6] 3d9 4s1 4p0

6 partial-waves in basis

Nickel 28.

GGA-PBE scalarrelativistic point-nucleus loggrid 1500 80. 2.3 loggderivrange -10. 10. 300

4 4 3 0 0 ! Up to 4s, 4p and 3d
1 0 2.0 ! Electronic configuration 3d9 4s1 4p0

2 0 2.0
2 1 6.0
3 0 2.0
3 1 6.0
3 2 9.0
4 0 1.0
4 1 0.0
0 0 0
c ! 1s
c ! 2s
c ! 3s
v ! 4s valence
c ! 2p
c ! 3p
v ! 4p valence
v ! 3d valence
2 ! Basis contains s, p and d partial-waves
2.3 2.3 1.1 2.2 ! rpaw=2.3, rshape=2.3, rveff=1.1, rcore=2.2
y ! Additional s partial-wave
4. ! at Eref=4.0 Ry
n
y ! Additional p partial-wave
4. ! at Eref=4.0 Ry
n
y ! Additional d partial-wave
2.5 ! at Eref=2.5 Ry
n
custom rrkj gramschmidtortho sinc ! RRKJ PW + sinc shape func.
Bessel ! Simple Bessel Vloc
2.3 ! Matching radius for Phi1 (l=0)
2.3 ! Matching radius for Phi2 (l=0)
2.3 ! Matching radius for Phi3 (l=1)
2.3 ! Matching radius for Phi4 (l=1)
2.3 ! Matching radius for Phi5 (l=2)
2.3 ! Matching radius for Phi6 (l=2)
1
1 0 2.0 ! Test configuration 3d8 4s2

2 0 2.0
2 1 6.0
3 0 2.0
3 1 6.0
3 2 8.0
4 0 2.0
0 0 0
2 ! Output for abinit
prtcorewf noxcnhat rsoptim 12. 2. 0.00001 logspline 500 0.03 ! abinit options
3 ! Output for PWscf
upfdx 0.005 upfxmin -9.0 upfzmesh 1.0 ! PWscf options
0 ! END

 User’s guide for atompaw 17

Advice for use

In the following we give some keys for non-experienced users so that they can build
input files for atompaw for new materials.

Short write-up

The first advice is to begin with a simple expression of the input file, setting most of the
keywords to their default values.

○ Concerning the all-electrons atomic computation, prefer a logarithmic grid; test the
influence of the number of grid points and, in case of difficulties, choose a regular grid.
Begin with a scalar-relativistic solution of the wave equation. If the system shows
convergence problems, try non-relativistic choice (not recommended when Z becomes high).

○ Concerning the partial-waves basis generation, simply begin with:

- an unique radius rpaw

- 2 partial-waves per l angular momentum (if rpaw is small enough, 1 wave per l may suffice)

- “bloechl” choice for projector_keyword
- a norm-conserving Troullier-Martins pseudopotential at lloc=lmax+1 and Eloc=0.

This choice should give a “stable” PAW dataset with correct physical results ; but
Blöchl’s scheme for projectors can produce “inefficient” datasets (in the sense that they
may need a large number of plane waves to converge the DFT calculation). To increase
performance, choose the “vanderbilt” option for projector_keyword. The gain can
be noticeable. But, generally, the best choice (for performance) would be “custom
rrkj” projectors.

○ Concerning the pseudopotential VPS(r), norm-conserving Troullier-Martins is generally
the best choice but it can produce “ghost states” for d and f materials. If this happens, a
simple “Bessel” pseudopotential can solve the problem. But, in the later case, one has
to noticeably decrease the matching radius rvloc (try 0.6*rpaw first).

○ The other keywords in the input file can be adjusted (by experienced users) in order to

obtain better results on physical properties (by comparison with all-electrons
calculations)…

 User’s guide for atompaw 18

Detailed write-up

Here is a proposal for using atompaw to build new PAW datasets (from scratch). The
procedure detailed here should help the user to generate optimal datasets in most cases.

 In a first stage, edit a simple input file for atompaw.

○ In the all-electrons atomic computation part

~ Define the material in the first line

~ Choose the exchange-correlation functional (LDA-PW or GGA-PBE) and select a
scalar-relativistic wave equation and a (2000 points) logarithmic grid (second line).

“scalarrelativistic” is recommended for high Z materials

~ Then define the electronic configuration; an excited configure may be useful if the
PAW dataset is intended for use in a context where the material is charged (such as
oxides). Although, in our experience, the results are not
 highly dependent on the chosen electronic configuration.

~ Select the core and valence electrons: in a first approach, select only electrons from
outer shells. But, if particular thermo dynamical conditions are to be simulated, it is
generally needed to include “semi-core states” in the set of valence electrons. Semi-
core states are generally needed with transition metal and rare-earth materials.
There are also some cases (such as P) where physical conditions do not indicate a
need for semi-core states, but the use of semi-core states are needed to avoid the
appearance of the dreaded ghost states.

Note that all wave functions designated as valence
electrons will be used in the partial-wave basis.

○ In the partial-waves basis generation part

Begin with a simple scheme. Select most of the keywords at their default values.

~ Enter only one matching radius (rpaw). Select it to be slightly less than half the inter-
atomic distance in the solid (as a first choice).

~ Add additional partial-waves if needed: choose to have 2 partial-waves per angular
momentum in the basis (this choice is not necessarily optimal but this is the most
common one; if rpaw is small enough, 1 partial-wave per l may suffice). As a first
guess, put all reference energies for additional partial-waves to 0 Rydberg.

~ Select a “bloechl” projector scheme and a norm-conserving Troullier-Martins
pseudopotential at lloc=lmax+1 and Eloc=0. “bloechl” will probably be changed
later to make the PAW dataset more efficient.

○ In the test configuration part

~ Add one test configuration; a good idea is to test (at least) the electronic
configuration used in the all-electrons atomic computation part.

 At this stage, run atompaw !

The generated PAW dataset is a first draft. Several parameters have to be adjusted, in
order to get accurate results and efficient DFT calculations.

 User’s guide for atompaw 19

1. The sensitivity of results to some parameters has to be checked.

○ The radial grid:
Try to select 700 points in the logarithmic grid and check if any noticeable difference
in the results appears. If yes, adjust the size of the grid (else, keep 700 points). If the
results are difficult to get converged, try a regular grid…

For use with the pwpaw code, linear or logarithmic grids can be used.
For use with the abinit code, the logarithmic grid is preferred.

○ The relativistic approximation of the wave equation:
scalarrelativistic option should give better results than non-relativistic one, but
it sometimes produces difficulties for the convergence of the atomic problem (either at
the all-electrons resolution step or at the PAW Hamiltonian solution step). If
convergence cannot be reached, try a nonrelativistic calculation (not
recommended for high Z materials).

○ A summary of the atomic all-electrons computation and the PAW dataset properties
can be found in the Atom_name file (Atom_name is the first parameter of the input
file). A look at the different values of evale (valence energy) is important. All-electron
value has to be as close to others as possible. evale has to be insensitive to grids
parameters.

2. Have a look at the partial-waves, PS partial-waves and projectors.

Plot the wfn.i files in a graphical tool of your choice. You

should get 3 curves per file: ri , ri
~

 and rpi
~

○ The ri
~

 should meet the ri near or after the last maximum (or minimum). If not,
it is preferable to change the value of the matching radius rci.

○ The ri
~

 and rpi
~

 should have the same order of magnitude. If not, you can try to
get this in three ways:

- Change the matching radius rci for this partial-wave; but this is not always
possible… spheres cannot have a large overlap in the solid…

- Change the pseudopotential scheme (see later).

- If there are two (or more) partial waves for the considered l angular momentum,
including additional partial waves (unbound states):
Decreasing the magnitude of projector is possible by displacing the references
energies. Moving the energies away from each other generally reduce the
magnitude of projectors, but a too big difference between energies can lead to
wrong logarithmic derivatives (see following chapter).

○ The two first values of evale (valence energy) in the Atom_name file have to be close.
If not, choices for projectors and/or partial waves certainly are not judicious.

○ Example of difficulty with rpi
~

: when the amplitude of projectors becomes too
large, atompaw can produce an error with the following message:

No convergence in boundsep

Followed by
Best guess of eig, dele = xxxxx yyyyy

This happens during the PAW Hamiltonian resolution (which cannot be achieved). One
can bypass the difficulty by generating “softer” projectors as explained just above.

 User’s guide for atompaw 20

3. Have a look at the logarithmic derivatives.

They are printed in the logderiv.l files. Each logderiv.l file correspond to l
quantum number and contains the logarithmic derivative of the l-state,

 drEd l /log , computed for exact atomic problem and with the PAW dataset.

○ The 2 curves should be superimposed as much as possible. By construction, they are
superimposed at the two energies corresponding to the two l partial-waves. If the
superimposition is not good enough, the reference energy for the second l partial-wave
should be changed.

○ Generally a discontinuity in the logarithmic derivative curve appears at
0<=E0<=4 Rydberg. A reasonable choice is to choose the 2 reference energies so that
E0 is in between (if possible, i.e. if one the 2 partial-waves correspond to an unbound state).

○ Too close reference energies produce “hard” projector functions. But moving
reference energies away from each other can damage accuracy of logarithmic
derivatives.

○ Another possible problem is the presence of a discontinuity in the PAW logarithmic
derivative curve at an energy where the exact logarithmic derivative is continuous.
This generally shows the presence of a “ghost state”.

First, try to change to value of reference energies; this sometimes can make the ghost
state disappear.

If not, it can be useful to:

- Change the pseudopotential scheme. Norm-conserving pseudopotentials are
sometimes so deep (attractive near r=0) that they produce ghost states. A first
solution is to change the l quantum number used to generate the norm-conserving
pseudopotential. But this is generally not sufficient. Changing the pseudopotential
scheme is (in most cases) the only efficient cure.

Select a simple “bessel” pseudopotential can solve the problem. But, in that case,
one has to noticeably decrease the matching radius rvloc if one wants to keep
reasonable physical results. Loosing to much norm for the wave function associated
to the pseudopotential can have dramatic effects on the results.

Selecting a value of rvloc between 0.6*rpaw and 0.8*rpaw is a good choice; but the
best way to adjust rvloc value is to have a look at the two first values of evale in
Atom_name file. They have to be as equal as possible and are sensitive to the
choice of rvloc.

- Change the matching radius rci for one (or both) l partial-wave(s). In some cases,
changing rci can remove ghost states …

In most cases (changing pseudopotential or matching radius), one has to restart the
procedure from step 2. (only for l partial-waves).

4. Now, one has to test the efficiency of the generated PAW dataset.

Run a DFT computation and determine the size of the plane wave basis
needed to get a given accuracy. If the cut-off energy defining the plane
waves basis is too high (higher than 20 Hartree, if matching radius has a reasonable

value), some changes have to be made in the input file.

 User’s guide for atompaw 21

○ First possibility: change projector_keyword=“bloechl” by
projector_keyword=”vanderbilt”. Vanderbilt projectors generally are more
localized in reciprocal space than Bloechl ones.

Recheck the plane waves cut-off (in a DFT calculation)… it
should have decrease (but this is not a general rule).

○ Second possibility: use RRKJ pseudization for PS partial-waves (put
projector_keyword=”custom” and ps_keyword=”rrkj”). This pseudization is
particularly efficient and gives highly localized projectors (in reciprocal space). This
choice has, in most cases, the best influence on the plane wave basis.

One has to note that:

~ The localization of projectors in reciprocal space can (generally) be predicted by a

look at tprod.i files. Such a file contains the curve of qqpq ii ~~2 as a function
of q (reciprocal space variable). q is given in Bohr-1 units; it can be connected to the

plane waves cut-off energy (in Hartree units) by: 2/2
cutcut qE . These quantities are

only calculated for the bound states, since the Fourier transform of an extended
function is not well-defined.

~ Generating projectors with Blöchl’s scheme often gives the guaranty to have stable
calculations. atompaw ends without any convergence problem and DFT calculations
run without any divergence (but they need high plane wave cut-off). Vanderbilt
projectors (and even more “custom” projectors) sometimes produce instabilities
during the PAW dataset generation process and/or the DFT calculations…

In most cases, after having changed the projector generation scheme, one has to
restart the procedure from step 2.

5. Finally, have a careful look at physical quantities obtained with the PAW dataset.

It can be useful to test their sensitivity to some input parameters:

- The analytical form and the cut-off radius rshape of the shape function used in
compensation charge density definition. By default a “sinc” function is used but
“gaussian” shapes can have an influence on results. “Bessel” shapes are efficient
and generally need a smaller cut-off radius (~0.8*rpaw).

- The matching radius rcore used to get pseudo core density from atomic core density.

- The integration of additional (“semi-core”) states in the set of valence electrons.

- The pseudization scheme used to get VPS(r).

All these parameters have to be meticulously checked, especially if the PAW dataset is
used for non-standard solid structures or thermo dynamical domains.

 User’s guide for atompaw 22

Appendix

 User’s guide for atompaw 23

Appendix A: use of LibXC library

LibXC is a library (available from the web) under GNU-LGPL written by M. Marques,
that contains a large set of very varied exchange-correlations functionals.
Provided that it is linked to LibXC library, atompaw can use these exchange-correlation
functionals (at present only LDA and GGA).

Note : at present, only abinit code can use LibXC functionals.

LibXC is available at : http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

How to build atompaw with LibXC support

 Download LibXC tarball from

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:download

 Build LibXC and install it with the standard Linux procedure (see LibXC manual) :
./configure ; make ; make install

Let’s suppose in the following that LibXC is installed in ~libxc

 Build atompaw with LibXC support
At configure process, add the following options:
 --enable-libxc --with-libxc-incs=”-I~libxc/include” \
 --with-libxc-libs=”-L~libxc/lib -lxc”

Then build and install atompaw :
make ; make install

How to use atompaw with a LibXC functional

 Choose an Exchange functional and a Correlation functional, or directly one single
Exchange-Correlation functional, in LibXC list:

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:manual#Available_functionals

 If your choice is an Exchange-Correlation functional, put its name as XC_functional
keyword in atompaw input file.

If your choice is an Exchange and a Correlation functional, put the XC_functional
keyword as a merge of the two names separated by a ”+” (plus).

Examples: if you want to use XC_GGA_XC_B97, put: XC_GGA_XC_B97
if you want to use XC_LDA_X and XC_LDA_C_PW, put: XC_LDA_X+XC_LDA_C_PW

Example of input file using LibXC (GGA-PBE functional):

Note for experts: you also can address LibXC functionals in input file by their numerical identifier:

XC_functional = LIBXC_101+LIBXC_130

B 5.
XC_GGA_X_PBE+XC_GGA_C_PBE loggrid 2001
2 2 0 0 0

2 1 1.0

0 0 0
c

v

v
1
1.7

y
3.

n
y

3.
n

 User’s guide for atompaw 24

Appendix B: comparison between DFT codes

The results of the illustrated atompaw input file result in nearly identical results among the 3
PAW codes pwpaw, abinit, and PWscf and with the all-electron code WIEN2k which uses
the LAPW method as shown in the following binding energy curve:

Li 3
GGA-PBE loggrid 2001
2 2 0 0 0 0
2 1 0
2 0 1
0 0 0
v
v
v
1
1.6 1.3 1.6 1.6
n
n
vanderbilt besselshape
2 0
1.4
1.6
1.6
2
default
3
upfdx 0.005 upfxmin -9.0 upfzmesh 1.0

