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These notes are based on published work on the PAW formalism ([1, 2, 3, 4]) as implemented in the
atompaw and pwpaw codes (http://pwpaw.wfu.edu). This version corrects some erroneous factors
of 47 and introduces a new grouping of terms to be used in future versions of pwpaw. Please send
any questions and report errors to natalie@wfu.edu.

1 PAW basis and projector functions

PAW calculations require a set of basis and projector functions which are denoted (in the notation
of previous work[1, 2, 5, 6, 3, 4]) |#%(r)), |¢¢(r)), and |[p¢(r)), for the all-electron basis functions,
pseudopotential basis functions, and projector functions, respectively. Here the “a” superscript
denotes the atom index (which is suppressed in most of the remainder of this section), and the
“¢” subscript represents the atomic quantum numbers n;, [;, and m;. Since these function are
constructed from equations for a spherical atom, each can be written as a product of a radial

function times a spherical harmonic function, such as:

620)) =m0 = 2y ), e

This notation is used to also enumerate the radial functions ¢y ; (), QNSZZIZ (r), and p ; (r). The
symbol n; often corresponds to the principal quantum number for the state but also can corre-
spond to enumerate generalized functions needed for the basis.[1] The symbol I; corresponds to the
angular momentum quantum number. Although the PAW method works using any of a variety
of basis and projector functions, the efficiency and accuracy of the calculation are affected by this
choice. In earlier work[2, 5] we investigated several alternative construction schemes. However,
we found a slight modifications of the original schemes developed Vanderbilt[7] for his ultra-soft
pseudopotential formalism and by Blochl[1] for the PAW formalism, to be the most robust. In the
following we refer to these different schemes as the “Vanderbilt” or “Bléchl” schemes by which we
mean to credit their basic ideas, but imply no responsibility to either of them for how we have
implemented them in the atompaw code.

The starting point of the construction process is an all-electron self-consistent solution of the
Schrodinger equation for the reference atom a. (For the remainder of this section, we will drop
the index a.) It is assumed that the total electron density can be partitioned into a core electron
density neore(r), corresponding to Qeore €lectrons and a valence electron density. The core density
Neore(T) 18 assumed to be fixed (“frozen”) in the same form in the atom as it is in the solid. Thus, all
of the calculational effort can be focused on the valence electrons. For some materials, especially
transition metals or ionic compounds, it is prudent to extend the notion of “valence” electrons
beyond the chemical definition to include upper core states. It is for the purpose of representing
these generalized valence electrons in the atom and in the solid that we construct the basis and
projector functions. The symbol n(r) is used to denote the corresponding valence electron density.



The all-electron basis functions |¢;(r)) are valence and continuum eigenstates of the Kohn-Sham|8]
Hamiltonian.

H(r)[¢i(r)) = eildi(r)), (2)
The Hamiltonian takes the form:
2
H(r) = —;—V + et (1), (3)

where the self-consistent valence density n(r) enters through the effective potential:

+ Uxc [ncore(r> + TL(T')] (4)

Ze? /dgr' Neore (") + 1 (1)
r
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Here Z denotes the nuclear charge. The function py. denotes the exchange correlation functional.
In the present work, we used the local density approximation (LDA) form of Perdew and Wang][9],
but other forms can be easily added to the code. Self-consistency implies that the valence density
and the valence basis functions are related according to:
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where 0,,,;, denotes the occupancy of the orbital “n;l;” which can be zero, especially for generalized
functions.

The next consideration is to construct a pseudopotential function VF5(r) that will be used to
construct the smooth basis functions Cgm-li (r) and whose unscreened version will be appear as a
local pseudopotential contribution to the smooth Hamiltonian. Our current recommendation for
VP5(r) is to construct @oc(r) using a norm-conserving pseudopotential[10, 11, 12] approach. The
idea is that in this way, the local potential can be constructed to force the good representation of
partial wave components with the chosen angular momentum L,. The partial wave components
with smaller angular momentum will be represented with the non-local terms in the usual PAW
construction. This is by no means a new idea and was inspired by David Vanderbilt’s webpage on
soft-pseudopotential generation http://www.physics.rutgers.edu/ dhv/uspp/.

We recommend using the Troullier-Martins[12] form of the norm-conserving pseudopotential (key-
words VNCT or VNCTV). The main equations describing the method are as follows. L, represents
the angular momentum chosen for constructing the norm-conserving (screened) pseudopotential.
The pseudowavefunction is chosen to have the form:

qg(r) _ { rlotlf(r) for r <7, (6)

o(r) for r > re.

Here ¢(r) represents a chosen continuum wavefunction of the all-electron Hamiltonian at energy
E. The function f(r) is chosen to have the form

fr) = e, (7)

where p(r) is chosen to be an even 12" order polynomial:

6
= Z Cyr®™. (8)
m=0



The 7 polynomial coefficients {C,,} are chosen to ensure that the wavefunction and its first 4
derivatives are continuous at the matching radius in addition to the norm conservation condition.
The last constraint is that screen pseudopotential has zero slope at the origin which, as shown
by Troullier and Martins[12] means that C? + (2 + 5)Cy = 0. The matching radius r. defines
an augmentation sphere about each atom. It is assumed that there should be little or no overlap
between augmentation spheres in all of the materials studied with the pseudopotential and basis
functions. The screened norm-conserving pseudopotential can be determined from polynomial

according to
n? (d2p dp\? 2(L, +1)dp
yPs E v
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By construction, this function and its first two derivatives are equal to veg(r) for r > r.

At this point, we can construct a smooth pseudo-Hamiltonian analogous the all-electron Hamilto-
nian (2) of the form

H(r) = —Q’ZW +VPI(r). (10)

We are now in a position to determine the projector and basis functions. The two methods that work
well are either the Blochl scheme (keyword VNCT) or the Vanderbilt scheme (keyword VNCTV). As
we have implemented it, the Vanderbilt scheme has more flexibility and it seems possible to derive
slightly more rapidly converging projector and basis functions by fiddling with the parameters.

1.1 Vanderbilt scheme

In this scheme, the the shape of the smooth basis functions are directly controlled, ggl(r) while the
projector functions p;(r) are derived. Each radial smooth function is chosen to have the form

4
plitt Z Cppr®™ for r<mr;
m=0

énili (7’) = (11)

¢nili (T) for r >y

The matching radii 7; < r. are used to control the shapes. The 5 coefficients {C,} are chosen so

that ¢p,1, (1) = ¢n,1,(r) at 5 points in the neighborhood of r; which is roughly equivalent to ensuring
that the function at its first 4 derivatives match at r;. For each smooth basis function, we can form
a localized auxiliary function

Xn;l; (T) - <5i + - ( i - ll(lljl)> - VPS(T)> &nili(r)v (12)

2m \ dr? r

which, by design vanishes for » > r.. The projector functions are then formed from a linear
combination of these auxiliary functions of the same angular momentum:

P (r) = 2 xnt () (BT (13)
n; g
where the elements of the matrix B are given by

mmzf%@mmMMm (14)
0
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As shown by Vanderbilt[7] this construction ensures that
(@ilBs) = dis (15)

and that the smooth basis function qzzz(r) is an eigenfunction of the atomic PAW Hamiltonian.

1.2 Blochl scheme

In this scheme, the shape of the projector functions p;(r) are chosen while the smooth basis functions
d;Z(r) are derived. As we have implemented the scheme, the shapes of the functions are generally
controlled only with choice of the augmentation radius r. which is taken to be the same as that
used to construct the screened local pseudopotential VF¥(r) discussed above. Of course, there
addition flexibility in choosing the set of all electron basis functions {¢2ili (r)} as discussed above,
where we use the superscript “0” to denote the initial basis functions which may change later due
to orthogonalization requirements.

In Blochl’s pseudo-function construction scheme, the projector functions are constructed with the
help of a shape function k(r) which vanishes outside the augmentation region. In previous work
we find the following shape function to work the best:

k(r) = (Lwr for r < r, (16)

for r > r,

The pseudo-basis functions |gz~5?(r)> are found by solving a self-consistent Schrodinger-like equation
involving the “smooth” Hamiltonian H. The equation takes the form:

() = &) 1970)) = Cik(r) |6 (r))- (17)

In this equation, ¢; is fixed at the all-electron eigenvalue found in Eq. (2), while C; is to be
determined. In numerically integrating the radial part of this equation for (52#1_ (r), the coefficient
C; is adjusted so that Q’ggili (r) has the correct number of nodes for each [ value (zero nodes for the
basis function with the lowest one-electron energy ¢,,,;,, incremented by one node for each additional
basis function at higher one-electron energies). In addition, the coefficient C; is adjusted so that

~9”11,(7’) satisfies the boundary condition:

D0, (r) = ¢ (r)  for r >re. (18)

In practice, this is achieved by iterating Eq. (17) with variations in C; so that the logarithmic
derivatives of gi)gi 1, (re) and qb?” 1, (r¢) are equal, following the approach described in Hartree’s text[13].

Once the pseudo-basis functions |¢?(r)) have been determined by finding the solution of Eq. (17),
the corresponding projector functions are formed according to:

" k(r)]| 49 (x))
]p?(r)} = 7)7%- (19)
(951Kl ¢5)
This means that these initial pseudo-basis functions and the corresponding projector functions are
normalized according to

(@157 =1, (20)



and related to the smooth Hamiltonian according to the identity:

(H(r) = &) |60(r)) = [P (0)) (01 H — e:l). (21)

The final basis and projector functions {|¢;(r)), |¢;(r)), |p;(r))} are formed from the initial functions
{1¢9(r)), |2(x)), |9(r))} by a Gram-Schmidt orthogonalization procedure as described in Egs.(91-
96) of Ref. ([1]). Specifically, for each angular momentum quantum number [, we denote the
successive radial functions with indices ni,ns, ... etc. The first set of basis and projector functions
is given by the initial functions:

Brat(r) = B (r), - Gnut(r) = 00, (r), and  dnyi(r) = 6, (r). (22)

If there is a second radial basis function for that [, the final function is orthonormalized with respect
to the first according to:

Brat(r) = Fst [00(7) = Pt (1) (Smatl 0, (23)
Gnat (1) = Frat [800(r) = Gt (1) (Bt 8%,0)]

Gnat(1) = Frat [ #%,0(1) = bt (1) (il 8,0)]
where,
_ 0 = v 50 () TH2
Foot = (1= (Bl Gntl$0)) - (24)

If there were addition radial basis functions for that [, they would be orthonormalized in a similar
way. In our experience, and in that of previous workers[14, 15], one or two radial basis functions
are usually sufficient to span the Hilbert space of smooth functions within each atomic sphere.

2 Self-consistency requirements

The self-consistent smooth Hamiltonian is expected take the following form:

H(r) = —%W + Dot (1), (25)

where the smooth effective potential is given by

3! ﬁcore(rl) +n(r') + ﬁ(r/)

Ty + pixc[Mcore (1) + 12(7)]. (26)

Bt () = Broe(r) + €2 /

Here the pseudo-density n(r) in Eq. (26) is determined from the pseudo-basis functions and their
occupancies oy, according to

- ’(l;%-l-(rﬂz
n(r) = Zomliﬁ' (27)
n;l;



In Eq. 26, the function ficore(r) is introduced to represent the tail of the core density for r > r.
and a smooth continuous function for r < r.. In particular, we choose

r2(Uy + Uar? + Ugr*) for r <r,

A7 Neore (1) for r>re, (28)

47?7“21%0“3(7“) = {

where the constants Uy, Us, and Uy are chosen so that 47rr2fzcore(r) = dy and its first two derivatives
dy and ds are continuous at r.. This determines the constants to be

9 1
U()Tg = 3dy — §d17“c + gdg?”g. (29)
7 1,
Usr. = —3dy + Zdlrc — Zdz?“c. (30)
5 1 9
Uy =dy — gdﬂ‘c + ngTc‘ (31)

The additional “compensation” charge density contribution in Eq. 26 denoted by 7(r), represents
the total atomic charge minus the pseudo charge, redistributed to a convenient smooth form. This
charge density is spherically symmetric for the atom and can be written:

A(r) = Qoogoo(T), (32)
where the monopole moment Qg is
Q= —Z + / Br [neore(r) + n(r) — freore(r) — (1) . (33)

The functional form of atom-centered moments of the compensation charge is now chosen to be
proportional to the shape function (16):

grm(r) = /\/LrLk(r)YLM(f'), where, [\/ZEJVL}*1 = /OTC dr r?+2L E(r). (34)

Here, Y7/ () denotes the spherical harmonic function and N7, denotes a normalization factor. For
the atom, only the monopole term is needed; Eq.(34) applies more generally to the solid.

Finally, the local potential term of Eq. (26) can be determined from a knowledge of the smooth
(n(r)), compensation (7(r), and coretail (fcore(r) densities by unscreening the local pseudopotential
(9) according to:

. Ticore(T") + 1(r") + A (r’ . .
() = V75 (r) = [t P L EREIER) il (09
In this formulation, the unscreened local pseudopotential 0}, () is confined within the augmentation
sphere (r <r.).

3 PAW Hamiltonian

In terms of these basis functions, the generalized eigenvalue equation for the PAW formalism can
be written 3 3
HPAW (0) W5 (r)) = EO[U(r)), (36)



where

HPAW = F(r) + 3 [59) ({67 1H"(65) — (7 |H|85)) (B5] = H(x) + Y [p0)Df; (55 (37)

atj atj

The overlap term is given by

=14+ 150 ((67165) — (64165) ) (551 (38)

atj

It can be shown that the pre-orthonormalized smooth basis functions functions {|¢?(r))} — |¥g(r))
in the Blochl formulation and the corresponding smooth basis functions in the Vanderbilt formula-
tion are exact solutions of the PAW equations (36).

The eigenstates |Wp(r)) of Eq. (36) are related to the eigenstates of the all-electron Hamiltonian,
according to:

|9 5(r)) = [¥p(r) +Z(|¢Z —~ 167(r))) (B¢ ¥ m), (39)

within the accuracy of the PAW representation. For the case of a spherically symmetric atom, the
site index a is trivial and all matrix elements are diagonal in I;m; indices.

In practice, the Hamiltonians H* and H® which appear in Eq. (37) are~deﬁned in terms of matrix
elements evaluated using the orthogonalized basis functions {¢¢} and {¢¢} [1, 2, 4]. The construc-

tion procedure ensures that HPAW reproduces the same eigenvalue spectrum as the all-electron
Hamiltonian within the energy range spanned by the basis functions.

4 Emnergy and Hamiltonian for solids.

The total energy expression for the solid is taken to be'
E=E+Y (B"-E"). (40)
a

The smooth contributions are given by

E= K+ /d3 /d3 s ((r) + Ncore(r) + ﬁ(r"r)')iﬁl(ﬁ,) + ficore (') + 7(r")) (41)
+ / d r vloc ) + By [ncore + n]

For the Bloch wavefunction ¥,k(r), with an occupancy of o,x, the smooth density is given by

n(r) = ZOnk,\I’nk(r)‘Qa (42)
nk

!We have simplified the core tail function defined in Ref.([2]) in this formulation so that overlapping core contri-
butions are neglected in the atom-centered contributions.



and the kinetic energy is given by

- K2
K=—— 0u(Wu(r) V2T (r)). (43)

2m -

The total energy expression (41) expression reflects the fact that in the solid, we need to superpose
the atom-centered compensation charge, coretail, and local potential contributions. The coretail
density takes the form

Ticore(T) = Z Tigore ([T — R[), (44)

allowing for the superposition of the smooth part of the core electron density in the treatment of
the smooth parts the Coulomb and exchange-correlation interactions.

The compensation charge density takes the form

a(r) = Y Qfpgrm(r —RY), (45)
alL M
where .
QaLM = ( Z + Qcore - ngre)(sLU(sMO + Z Wa Gl imglym; ngbfllnjl ) (46)
ij
where WZ‘; is defined below and
Wby = [ e [85,,0)68,, () — 3,10, ()] (a7)

The Gaunt coefficient is defined as follows?
GEM 1y, = VAT [ A2 (Y704 (2) Y, £, (18)
The coretail charge in Eq. (46) is given by
Yoo = [ A1) (49)
The total local pseudopotential contributions which appear in Eq. (41) take the form

leC Z Uloc - Ra‘)' (50)

As it is written, the Coulomb term in Eq. (41) represents a a neutral system. However, it includes
several unphysical self-interaction terms which must be substracted:

Z /d3 /d3 / core( )+n ( ))( core( /)+7¢La(r/))‘ (51)

v — x|

Since these terms depend on each atomic site, they are conveniently expressed in the one-center
terms given below. The exchange-correlation energy terms FEy. are currently evaluated using the
local density approximation of Perdew and Wang[9] or the generalized gradient approximation of
Perdew, Burke, and Ernzerhof[17, 18], although additional functionals could easily be added.

2This usage is convenient to the present application but the extra factor of v/47 is not included in the “standard”
definition of the Gaunt coefficient, such as found in Condon and Shortley[16].



The one-center terms are given by
. 1
= S (B + ol — 6 + 3 Vil ) 52
]

+ (EXC [ngore + na] - EXC [ﬁgore + ’FLaD o Ecore QOOEcore hat*

Here,
7,] = Z Onk nk‘pz ><p] ’\Pﬂk> (53)
nk
The kinetic energy is given by K = K gilinj L O1;1;0m;m,; With
B e 2 Ll +1) d? l(l+1)
Kgizmjliz—% 0 dr [ mat; (1) (drz .z ( ) — ¢nu( r) a2 2 ¢nj (r)] -
(54)
The ionic potential term is given by [vgi]ij = [Vat)nitingt;011;0mim;, Where [vgi]n,1n,1; is modified

from its definition in Eq. [3]-26.

rd VA 2 - ~
alonst = [ dr{ (1) (—fw&re(r)) 1) = i, (1) wsore(r)+6&C<r>>¢zﬂi<r>},

(55)
where v% . (r) and 9%,.(r) denote the Coulomb potentials corresponding to n . (r) and 7% ..(r)
respectively. The compensation charge matrix element is given by

[0 = ¢1 ‘@a‘(ﬁa ZQLM M I:mz]l\;[m]ﬁgtflmjlj (56)
where
AgllLln] 7 / drgb ( ) gljlj (T)’ (57)

and, using the definitions in Eq. (34) [Note: a factor of 47 in these equations is missing from these
equations because of the non-standard definition of the Gaunt coefficients.]

62

2L +1

N _ 2y Té 1L /
0 (r) = NL/O r'“dr ' k(). (58)

L+1
r>

The basis function Hartree term is given by

M L —M ayral
VH ij — Z Z l m,Ll m; lemkllmlWlenilinjlj;nklknlll7 (59)
LM Kkl

where

Vi = g5 [0 [ a0 [m(r) 51, (1), 1), ()
_Qggllll(r)ég%]l](r)d;’ralklk(rl)qggllll(rl) : (60)

In Eq. (52), we have 3 types of “self” interactions which are subtracted from the evaluation. The
compensation charge self energy is given by:

B = Y QB (o)
LM



where

2 a a /
fal — € 3.3 190m (T)g7 (')
The coretail self-energy is given by
More () More (r')
B = —/d?’ e R (63)
The coretail-hat interaction energy is given by
960 (T) ore (T')
QOOEcore hat — Q()Oe /d3 d3 /200°8 |I‘ _C(;‘r/e’) ’ (64)

This treatment of the effects of the coretail density differs from that of our previous work[2]. In
this formulation, the one-center terms do not include any core-overlap effects and therefore may
not completely cancel the corresponding terms in the smooth Hamiltonian in the augmentation
sphere, hopefully a very small error. The core tail density which is included in the smooth Hamil-
tonian represents the Coulombic and exchange-correlation contributions from the small overlap of
the frozen core densities. The interactions of the core tail density from a single atomic site are
subtracted out using the self-energy terms.

The PAW Hamiltonian (37) can be determined [1] by taking the variation of the energy (40) with
respect to the the smooth wavefunctions W, (r). This gives the smooth contribution

- K2
H(r)=——
(r) va + Vgt (1), (65)
where ~ , ., L
B () = () + €2 [ b Tore ) — : |) EA) 4 prelicore(x) + A1), (66)
The atom-centered contributions are given by
Dy = Kijj + [vglij — [0%)i5 + [Vitli + [06]i5 + [Vxclij- (67)
Here the exchange matrix element is given by
Vitchs = [ 4 Yiip (¥, () [ dr [clncons () + n()]dns ()1, (1) (68)

—Hxc [ﬁcore(r> + ﬁ(r)]énili (r)$n]~lj (7’)} :

The shift term comes from the variation of Qs which Blochl showed to have the form

[v6li; = Z 8 lmll m]”ZZLl il (69)
where
8 _ [ oy [ oy H)+ 0] + 0o () o)
0QLm r — 1’|
Z M leZJleJ ’035 il 2QLMEGL Egorefhat(SLO(sM&
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To evaluate the smooth contributions, it is convenient to use a planewave representation

\[ ZAnk Jeilk+G)r (71)

were G denotes a reciprocal lattice vector and V denotes the volume of the unit cell. In these
terms, the smooth energy is given by

. K2k + G|? 2e? W G) + Neore(G) + 1 (G)|?
EzZ%(Z | | A (G) 2> ZI (G) +n(G)|
nk G0

2
el 2m G

Z 7:) + Exc [ncore + n] (72)
G

The force on an atom a at the site R® is given by

7Ti€2 G fla(G) + 7:lgore(G") ﬁ*(G) + ﬁ*(G) + ﬁ:ore(G)
PO = (Vi (B} = T Y | ][GQ |
G#0

+5 I GG (@)+; 3 6 il @)@ - (T (W]} 0+ 5 {Va [U5]} 05

G;AO G;AO ij
(73)

The first contribution depends on the Fourier transform of the atom-centered compensation and
coretail charges and the second contribution depends on the Fourier transform of the atom centered
local potential (Eq. [3]-14). The third term represents the effects of the coretail densities in the
exchange-correlation interaction. The last term of the force equation involves a weighted projected
occupation coefficient which we define according to

z] = Z Onk Enic (¥ nk‘pz ><pj |‘1}nk> (74)
nk
The gradient with respect to the atomic position of both W} and Uj; depends on the gradient

of the matrix elements (VRa[Nf]]\T/nQ which can be conveniently evaluated in Fourier space using
equation [2]-A20.

5 Energy and Hamiltonian for atoms

For atoms, the general PAW equations discussed above apply, but there are some simplications due
to spherical symmetry. The smooth contribution to the energy (41) representing the pseudopotential-
like contributions can be written in the form

E Zonl K+ — /d3 /d3 /n +/d3T n\r ) {'Uloc( ) + 'Ucore( ) {)(7’)} +Exc[ﬁcore+'ﬁ]7
(75)
where K,,; denotes the radial kinetic energy operator.
h? - 2 1(l+1)) -
Ky = _%/ dr d)nl(r) <d7"2 - r2 anl(r)' (76)
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The smooth density 7(r), core tail density 7icore(r), and compensation charge density n(r) have
been defined in equations 27,28 and 32, respectively. Their corresponding Coulomb potentials are

Veore(T) = € /d3 /core(1") o(r)=e /d3 r_Alr') (77)

|r — 1| r —r'|

given by

The remaining terms of the total energy are all atom-centered terms which can be determined
from expressions defined above, but because of the spherical symmetry some of these expressions
simplify:

I/Vzg = ZOnl<¢nl|p~nil><ﬁnjl|¢nl>5lil6ljl~ (78)

nl

Only the L = 0 moment of the density matrix element is relevant:

Wy = [ (850,0)68,0) 30,038, (1) ) (79)

This allows us to calculate the charge moments

ng =7+ /d37‘ (ncore(’r') — ﬁcore Z Wz‘; ?l(z)m] . (80)

For the atomic case, only the L = 0 term appears in the Hartree term and the corresponding matrix
element can be determined from

Vitlis = > Wi Vit snadntls- (81)
"

The compensation charge term is given by
The matrix elements involving the compensation charge potential depend upon:

~a0 ~a

= [ dr B 05 0, (33
where 0§ (r) represents the potential due to a unit compensation charge density.

The Coulomb shift term takes the form

a 8E a
[v6li; = 308, Mty (84)

where for the atomic case,

d 4 a ~a0
a Qoa / r 4w (r ZWU Vil (85)
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The radial densities can be easily determined from
17r%3(r) = 3 ol ()2 (36)
nl
4mr?n(r Z H2 D1, (1) (87)

drPn(r) = Z W61, (P51, (). (88)
]

6 Formulation in the abinit code

Note: These equations have now been present in more complete form by the abinit group in Ref.
[19]. More recently, we showed that the pwpaw and abinit can be made essentially identical[20].
We have been working with the abinit project (http://www.abinit.org), especially with Dr. Marc
Torrent to interface our projector and basis functions for use in the paw mode of that code. In the
abinit code[21, 22, 23], the formulation of the PAW equations[24] more closely follows the equations
of Kresse and Joubert[6]. For convenience, we compare the notations as follows

Table 1: Correspondence between pwpaw (Refs. ([2, 3, 4])) and abinit (Ref.([6, 24])).

’ pwpaw \ abinit ‘
Wi P
—Z%0(r — R?) + ngope(r — R) ng (lr —R%)
feore (|t = R%[) + (= Z + Qcore — Qeore)goo(|r — R?) ng (Jr —R%)
Y WEGE 1m, M1, 900 (0 — RY) A’ (r— R2)
ij: LM
GLerr/{ll]mj nilingl; /\/E Q%L
VArgru(r — R?) gr(jr — R))Ypu (r — R9)
Gl tm; Mrgin 1,910 (£ — R?) 2F(r —R7)
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Here, we have used a “double hat” notation to distinguish the compensation charge function in
the abinit convention. In fact, the Coulomb potential corresponding to smooth ionic density term
n% (r) is not explicitly calculated, but is combined with the local potential term (35) according to
Eq.(60) in Ref. [6]. That is, in the construction of the pseudopotential parameters discussed in
Sec. (2), unscreening of the local atomic pseudopotential (35) is replaced by

.00 = V7S -t [ OO e )i el e

where in this equation 1%(r) represents smooth density in the atomic calculation for atom a. This
ionic pseudopotential term is referenced as vg[nz.] in Ref. [6], but since it essentially includes
both Hartree and additional local potential corrections, we prefer to use the more generic notation
of 9% (r). By construction, since the pseudopotential VePS (1) represents a neutral system, the
asymptotic form of the ionic potential 9% (r) is

2 2% = Qcore
This follows because, by construction,

tore = [ d¥r () + (). (o1)

Correspondingly, we can define the superposed ionic potential and the superposed compensation
charge densities as

Vg, (r) = ZUZC (lr —R?%|) and ﬁ(r) = Zﬁa(r —RY) ZZpZ]QaL (r —R%). (92)

a aij LM

In these terms, the total energy can be written in terms of smooth and a summation of atom-
centered contributions as defined in Eq. (40). In this case the smooth energy term analogous to
Eq. (41) takes the form:

B= K4 [ar [ay T n(\))_(n(\) D | Vit (93)
_|_/d r UZC(I') (ﬁ(r) + ’I%( )) + Emc[ncore +n+ TL]

Here, the ionic interaction term is defined by
Uion—ion = /d r 'UZ nZ Z /dgr UZC nZC< ) (94)

which can be evaluated using Ewald summation techniques. While the ionic self-interaction term
is easily treated in the Ewald term (94), additional self-interaction terms

{/dgr v, ( r)n r)—i—e;/d?’r/d?’r' W}, (95)

must also be subtracted from Eq. (93) and included in the atomic center contributions. Apart
from a different arrangement of the terms, the main difference between this form of the smooth
total energy and that of the pwpapw approach is, following the work of Kresse [6] the compensation
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charge f is included in the exchange-correlation expression. In principle, since the compensation
charge is localized within the augmentation sphere, is should be canceled out of the final energy by
atom-center terms. The abinit version of the one-center contributions corresponding to Eq. (52) is
given by

~ ~ N
Z pzyDaO +5 Z pl_]pkleljkl + Eﬂﬁc[n + ncore] - EIC[na + n(clore +n ] (96)
mkl

Here D%Q denotes the matrix elements which are diagonal in the angular momentum indices:
0
D?j = ( n;lin; + anl nj Sgilinj)éliljémimjy (97)

where the kinetic energy K, is the same as defined in Eq. (54) and the potential energy term

is given by

ilin;

Xin, = [ dr {0, (Dol ) (r)68,1,(r) = 90, (135,130, (98)

which is similar to Eq. (55). Here we have adopted the notation of Ref. [6] for vg[n] to denote the
Hartree (Coulomb) potential corresponding to a charge density n. The self-energy contribution to
D%O corresponding to the first term of (95) is given by

naling = /d3r 0 ( “0(7"). (99)

The four-component contribution comes from the Hartree contributions from the basis function
expansion, from the compensation charges, and from the last term of Eq. (95) correspond to the
compensation charge self-energy contribution:

a — M ~L —M LM aL
eijk:l = Z {(_1) GlimiljmjlemkllmlVnilinjlj;nklknlll (100)
LM
alL M ~L —M alL al fhal
—2G{M Tty Pnitin L, (— 1) Gl Undemaly, — 87“]1] Qe B }

In this expression. E% is defined in equation (62).

We can now again take the variation of the energy functional with respect to the smooth wave-
function ¥, (r) to find the corresponding PAW Hamiltonian in this formulation. The smooth term
takes the form (65) with the effective potential given by

Tt (x) = iz, (x) + € / d%’W

The corresponding atom-centered contributions can be written

+ fie|Freore (r) + A(r) + 7 (r))]. (101)

Df; = D+ plyetsia + Dife + DY, (102)
kl

Here D{i* is very similar to [V¢o]i; as defined in Eq. (69) except for the appearance of 7" in the

argument of the smooth exchange-correlation potential and for an additional contribution due to
ra

the dependence of n on the smooth wavefunction. The last term takes the form:

(/A

pe —/d r G (1) Q% (r — RY), (103)
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where Ueg(r) is the smooth effective potential for the system defined in Eq. (101). It corresponds
to Eq. (44) in Ref. [6].

The current version of the atompaw code now outputs the information needed by the pwpaw and
socorro[25] codes as well as by the abinit code. For pwpaw and socorro the local potential needed
is neutral originally defined by Bléchl[1] and is calculated here by Eq. (35) and is listed in the
[atom].atomicdata file with the keyword “VLOCFUN”. For abinit, the local potential is ionic
and is calculated here by Eq. (89) and is listed in the [atom].atomicdata files with the keyword
“VLOCION”. It is our experience that by using the consistently unscreened local potentials, it is
possible to get identical results with the different codes.

7 New grouping of PAW terms

For a variety of reasons primarily related to the implement of Fock exchange terms,[26] it turns out
convenient to regroup some of the terms described in the previous sections.

The expression for the smooth energy is identical to Eq. (41) however the compensation charge is
now divided into two contributions:

ﬁ(r) = ﬁval(r) + //)\ion(r)' (104)
The expression for pion(r) is given below. The expression for the valence contribution can be written
1 gu(lr — R%)) 3
a val
va You(r — R?), 105
2 l ;%QLM \/E |I'—Ra|2 LM( ) ( )
where
%J‘\?l - Z WaGl imiljm; ?Lfl ingl;e (106)
For evaluating the one-center Coulomb integrals, (using the shortened notation ¢f(r) = ¢ ; (r) we
can define .
r
Rifu = [ [drdr 5100006500160 0) (107)
>
and
Ribu=e [ [drar o (0B + ) (6 +age)). o9

This expression uses the notation of Ref. [26] in which

mgjL(r> = nlrlbflinjljg%(r)7 (109)

and the radial shape function g¢¢(r) is specifically normalized according to

/ “dr rEgd(r) = 1. (110)
0

It is apparent that these integrals are related to the Hartree term defined previous in Eq. (60).
Instead, we can replace Eq. 59 with

a new 1 M ~L —M al
[V ] ] = Z 2L + 1 Z( ]‘) Gl mll m; lemkllmkal (Rl] skl T Rl],kl) ° (]‘11)
LM kl
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The advantage of this result is that terms associated with the compensation terms are directly
evaluated in the Coulomb integrals and need not be evaluated separately. This grouping of terms
implies that instead of storing the original Hartree integrals defined in Eq. (60), we should store
1 L Sal,
AR}, = L1 (R?j;kl - R?j;k:l) : (112)
Additional contributions from the compensation charge arise from treating the ionic terms. We
can define an ionic compensation charge

) _ aion96(T)
Pon(r) = Q30”5 (113)

where Q41" = —Z%+ Q% .. — Q% .. This contribution together with the smooth core charge density
p2(r) combine to define a smooth ionic potential:

78 (7’) = 62/d37’/ (ﬁg(?’/) +ﬁ?on(r/))' (114)

ion |I‘ - I‘/’

Using this term, we can redefine the ionic potential term of Eq. (55) to be

re z . i
[Vat " Jnstingt; = /0 d?“{ nit; () (: + Veore (7 )) Pt (1) = Pt (1) (Oion (1) + Vlee (1)) P, (7“)}

(115)
This is exactly equivalent to Eq. (A12) of Ref. [26]. We can also define a smooth ion self-energy
term:

4m . -
B =5 [ dr e GE) + fion(r) Tnl1). (116)
and smooth ion-augmentation charge interaction energy
e = [ A g8(0) T, (117)
In these terms the one-center energy expression (52) then becomes
= W (K s+ VA )+ (Bl + 8] = el + 720) - B~ Q85 Bl s
(118)

In this scheme the one-centered matrix elements are slightly changed from Eq. (67)
Dify = K + [vaelij + Vit "Vij + [oglis + [Vicliss (119)
where now [v§];; is still given by Eq. (69) but the charge moment derivative is now given by

OE OE

aqev,,, ~ ogava,,, ~ Plon-nadordonr (120)

In practice, it is convenient to leave the code for the smooth contributions to the energy (E’ as given
in Eq. (72)). This means that only some of the one-center contributions are changed as discussed
above. Apart from the new form of atomic stored parameters, there is a new parameter

a Val Z Zj ?Lll njlj 5lilj 5mimj . (121)
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