Notes on GGA

General Equations:

$$
\begin{gather*}
E_{x c}=\int d^{3} r f(n(\mathbf{r}),|\nabla n(\mathbf{r})|) \tag{1}\\
v_{x c}(\mathbf{r})=\frac{\partial f(n,|\nabla n|)}{\partial n}-\nabla \cdot\left(\frac{\partial f(n,|\nabla n|)}{\partial|\nabla n|} \frac{\nabla n}{|\nabla n|}\right) \tag{2}
\end{gather*}
$$

Using FFT's -

$$
\begin{gather*}
n(\mathbf{r})=\sum_{\mathbf{G}} \tilde{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}} \tag{3}\\
|\nabla n(\mathbf{r})|=\left[\left|\sum_{\mathbf{G}} G_{x} \tilde{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}\right|^{2}+\left|\sum_{\mathbf{G}} G_{y} \tilde{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}\right|^{2}+\left|\sum_{\mathbf{G}} G_{z} \tilde{n}(\mathbf{G}) e^{i \mathbf{G} \cdot \mathbf{r}}\right|^{2}\right]^{1 / 2} \tag{4}
\end{gather*}
$$

Algorithm to calculate $v_{x c}$ for smooth pseudofunctions using 3 large work arrays of size of FFT grid:

1. $W_{1}=n(\mathbf{r}) \Leftarrow \operatorname{FFT}[\tilde{n}(\mathbf{G})]$
2. $W_{2}=0$
3.

Do $i=x, y, z$

$$
\begin{aligned}
& W_{3}=\nabla_{i} n(\mathbf{r}) / i \Leftarrow \operatorname{FFT}\left[G_{i} \tilde{n}(\mathbf{G})\right](\mathrm{FFT} \# 1,2,3) \\
& W_{2}=W_{2}+\left|W_{3}\right|^{2}
\end{aligned}
$$

Enddo
4. $W_{2}=|\nabla n(\mathbf{r})| \Leftarrow \sqrt{W_{2}}$
5. Accumulate $E_{x c}$ from $W_{1}(n(\mathbf{r}))$ and $W_{2}(|\nabla n(\mathbf{r})|)$
6. Similarly, use W_{1} and W_{2} on each grid point to replace $W_{1}=\frac{\partial f_{x c}}{\partial n}$ and $W_{2}=\frac{\partial f_{x c}}{\partial|\nabla n|} \frac{1}{|\nabla n|}$.
7. $\tilde{W}_{1}(\mathbf{G}) \Leftarrow \mathrm{FFT}^{-1}\left[W_{1}(\mathbf{r})\right](\mathrm{FFT} \# 4)$
8.

Do $i=x, y, z$
$W_{3}=\nabla_{i} n(\mathbf{r}) / i \Leftarrow \operatorname{FFT}\left[G_{i} \tilde{n}(\mathbf{G})\right](\mathrm{FFT} \# 5,6,7$ or could store and retrieve from first evaluation of same quantities)

$$
\begin{aligned}
& W_{3} \Leftarrow W_{3} \cdot W_{2}\left(W_{3} \text { now contains } \frac{\partial f_{x c}}{\partial|\nabla n|} \frac{\nabla_{i} n}{|\nabla n|}(\mathbf{r}) / i .\right) \\
& \tilde{W}_{3}(\mathbf{G}) \Leftarrow \mathrm{FFT}^{-1}\left[\tilde{W}_{3}(\mathbf{r})\right](\mathrm{FFT} \# 8,9,10) \\
& \tilde{W}_{1}(\mathbf{G})=\tilde{W}_{1}(\mathbf{G})+G_{i} \tilde{W}_{3}(\mathbf{G})
\end{aligned}
$$

Enddo
9. $W_{1}(\mathbf{G})$ now contains $v_{x c}(\mathbf{G})$.

This performs 10 FFT's with 3 large arrays or could perform 7 FFT's with 6 large arrays.
Evaluation of $v_{x c}$ contributions to atom-centered terms: In general, the matrix elements have the form:

$$
\begin{equation*}
M_{x c} \equiv\left\langle\phi_{i}^{a}\right| v_{x c}\left[n_{\text {core }}+n^{a}\right]\left|\phi_{j}^{a}\right\rangle-\left\langle\tilde{\phi}_{i}^{a}\right| v_{x c}\left[\tilde{n}^{a}\right]\left|\tilde{\phi}_{j}^{a}\right\rangle \tag{5}
\end{equation*}
$$

According to Eq. 2, the gradient contribution to $v_{x c}$ involves the divergence of the function

$$
\begin{equation*}
\mathbf{g}_{x c} \equiv \frac{\partial f(n,|\nabla n|)}{\partial|\nabla n|} \frac{\nabla n}{|\nabla n|} . \tag{6}
\end{equation*}
$$

Suppressing some of the extraneous notation, consider a term of the form

$$
\begin{equation*}
M_{x c}^{\prime} \equiv \int d^{3} r \phi_{i}^{*}(\mathbf{r}) \phi_{j}(\mathbf{r}) \nabla \cdot \mathbf{g}_{x c}(n,|\nabla n|) . \tag{7}
\end{equation*}
$$

Using the divergence theorem and the fact that the boundary terms cancel for the complete matrix element of $M_{x c}$,

$$
\begin{equation*}
M_{x c}^{\prime}=-\int d^{3} r \nabla\left(\phi_{i}^{*}(\mathbf{r}) \phi_{j}(\mathbf{r})\right) \cdot \mathbf{g}_{x c}(n,|\nabla n|) . \tag{8}
\end{equation*}
$$

This could be conveniently evaluated in spherical polar coordinates:

$$
\begin{equation*}
\nabla b=\hat{\mathbf{r}} \frac{\partial b}{\partial r}+\hat{\theta} \frac{1}{r} \frac{\partial b}{\partial \theta}+\hat{\phi} \frac{1}{r \sin \theta} \frac{\partial b}{\partial \phi} \tag{9}
\end{equation*}
$$

Derivatives of angular terms can be expressed in terms of derivatives of spherical harmonics and probably can best be done analytically. For example, writing $\phi_{i}(\mathbf{r}) \equiv \frac{\phi_{n_{i} l_{i}}(r)}{r} Y_{l m}(\hat{\mathbf{r}})$, one term of the matrix element can be written:

$$
\begin{align*}
&\left\langle\phi_{i}\right| v_{x c}[n]\left|\phi_{j}\right\rangle=\int d \Omega Y_{l_{i} m_{i}}^{*} Y_{l_{j} m_{j}} \int r^{2} d r\left\{\left(\frac{\phi_{n_{i} l_{i}} \phi_{n_{j}} l_{j}}{r^{2}}\right) \frac{\partial f}{\partial n}+\frac{\partial}{\partial r}\left(\frac{\phi_{n_{i} l_{i}} \phi_{n_{j} l_{j}}}{r^{2}}\right) \frac{\partial f}{\partial|\nabla n|} \frac{\partial n / \partial r}{|\nabla n|}\right\} \tag{10}\\
&+\int d \Omega \frac{\partial\left(Y_{l_{i} m_{i}}^{*} Y_{l_{j} m_{j}}\right)}{\partial \theta} \int d r\left\{\left(\frac{\left.\left.\phi_{n_{i} l_{i} \phi_{n_{j} l_{j}}}^{r^{2}}\right) \frac{\partial f}{\partial|\nabla n|} \frac{\partial n \mid \partial \theta}{|\nabla n|}\right\}}{}+\right.\right. \\
&+\quad \int d \Omega \frac{\partial\left(Y_{l_{i}^{*} m_{i}}^{*} Y_{l_{j} m_{j}}\right)}{\sin \theta \partial \phi} \int d r\left\{\left(\frac{\phi_{n_{i} l_{i}} \phi_{n_{j} l_{j}}}{r^{2}}\right) \frac{\partial f}{\partial|\nabla n|} \frac{\partial n / \sin \theta \partial \phi}{|\nabla n|}\right\}
\end{align*}
$$

Specific equations for PBE form $[1,2,3,4,5]$

Case with no spin polarization

For this case, the functional takes the form:

$$
\begin{equation*}
f(n(\mathbf{r}),|\nabla n(\mathbf{r})|)=n(\mathbf{r})\left\{\varepsilon_{x}\left(r_{s}, 0\right) F(s)+\varepsilon_{c}\left(r_{s}, 0\right)+H\left(t, r_{s}, 0\right)\right\} . \tag{11}
\end{equation*}
$$

Here,

$$
\begin{equation*}
\varepsilon_{x}\left(r_{s}, 0\right) \equiv-\frac{3 e^{2}}{4 \pi}\left(3 \pi^{2} n\right)^{1 / 3} \tag{12}
\end{equation*}
$$

The exchange gradient term depends on

$$
\begin{equation*}
s \equiv=\frac{|\nabla n|}{2 n k_{F}}=\frac{|\nabla n|}{2\left(3 \pi^{2} n^{4}\right)^{1 / 3}} \text { since } k_{F}=\left(3 \pi^{2} n\right)^{1 / 3}, \tag{13}
\end{equation*}
$$

according to

$$
\begin{equation*}
F(s)=1+\kappa-\frac{\kappa}{\left(1+\mu s^{2} / \kappa\right)} . \tag{14}
\end{equation*}
$$

Here $\kappa=0.804$ and $\mu=0.2195149727645171$.
The Wigner-Seitz radius parameter is given by

$$
\begin{equation*}
r_{s} \equiv\left(\frac{3}{4 \pi n}\right)^{1 / 3} \tag{15}
\end{equation*}
$$

The correlation is given as defined in Ref. ([5]):

$$
\begin{equation*}
\varepsilon_{c}\left(r_{s}, 0\right)=-2 \frac{e^{2}}{a_{0}} A^{\prime}\left(1+\alpha_{1} r_{s}\right) \ln \left[1+\frac{1}{2 A^{\prime}\left(\beta_{1} r_{s}^{1 / 2}+\beta_{2} r_{s}+\beta_{3} r_{s}^{3 / 2}+\beta_{4} r_{s}^{2}\right)}\right] \tag{16}
\end{equation*}
$$

Here the constant values are given (in Hartree energy units) as follows. (A^{\prime} is used to distingish a different " $A\left(r_{s}\right)$ " term used in the correlation expression below.)

$$
\begin{aligned}
& A^{\prime}=0.0310906908696548950 \\
& \alpha_{1}=0.21370 \\
& \beta_{1}=7.5957 \\
& \beta_{2}=3.5876 \\
& \beta_{3}=1.6382 \\
& \beta_{4}=0.49294
\end{aligned}
$$

The correlation gradient term depends on

$$
\begin{equation*}
t \equiv \frac{|\nabla n|}{2 n k_{s}}, \quad \text { with } \quad k_{s} \equiv \sqrt{\frac{4}{\pi a_{0}}}\left(3 \pi^{2} n\right)^{1 / 6} . \tag{17}
\end{equation*}
$$

a_{0} denotes the bohr radius. The correlation gradient functional is given by

$$
\begin{equation*}
H \equiv \frac{e^{2}}{a_{0}} \gamma \ln \left\{1+\frac{\beta}{\gamma} t^{2}\left[\frac{1+A t^{2}}{1+A t^{2}+A^{2} t^{4}}\right]\right\}, \tag{18}
\end{equation*}
$$

where this A function takes the form

$$
\begin{equation*}
A \equiv A\left(\varepsilon_{c}\left(r_{s}, 0\right)\right)=\frac{\beta}{\gamma} \frac{1}{\mathrm{e}^{-\Delta}-1}, \quad \text { where } \quad \Delta=\frac{\varepsilon_{c}\left(r_{s}, 0\right)}{\gamma e^{2} / a_{0}} \tag{19}
\end{equation*}
$$

The constants are given by $\beta=0.06672455060314922$ and $\gamma=\frac{1-\ln 2}{\pi^{2}}=0.03109069086965489503$.
The derivative terms take the form:

$$
\begin{equation*}
\frac{\partial f(n,|\nabla n|)}{\partial n}=\frac{\partial f_{x}(n,|\nabla n|)}{\partial n}+\varepsilon_{c}\left(r_{s}, 0\right)+H\left(r_{s}, t, 0\right)-\frac{r_{s}}{3} \frac{\partial \varepsilon_{c}\left(r_{s}, 0\right)}{\partial r_{s}}\left(1+\frac{\partial H}{\partial e_{c}}\right)-\frac{7 t}{6} \frac{\partial H\left(r_{s}, t, 0\right)}{\partial t}, \tag{20}
\end{equation*}
$$

where the exchange contribution is given by

$$
\begin{equation*}
\frac{\partial f_{x}(n,|\nabla n|)}{\partial n}=-\frac{e^{2}}{\pi}\left(3 \pi^{2} n\right)^{1 / 3}\left(F(s)-\frac{d F(s)}{d s} s\right), \tag{21}
\end{equation*}
$$

where the last term becomes

$$
\begin{equation*}
\left(F(s)-\frac{d F(s)}{d s} s\right)=1+\kappa-\frac{\kappa+3 \mu s^{2}}{\left(1+\mu s^{2} / \kappa\right)^{2}}, \text { since } \frac{d F(s)}{d s}=\frac{2 \mu s}{\left(1+\mu s^{2} / \kappa\right)^{2}} . \tag{22}
\end{equation*}
$$

The derivative of $\varepsilon_{c}\left(r_{s}, 0\right)$ is given, following Perdew and Wang[5]:

$$
\begin{equation*}
\frac{\partial \varepsilon_{c}\left(r_{s}, 0\right)}{\partial r_{s}}=-\frac{e^{2}}{a_{0}}\left(2 A^{\prime} \alpha_{1} \ln \left(1+1 / Q_{1}\right)+\frac{Q_{0} Q_{1}^{\prime}}{Q_{1}\left(Q_{1}+1\right)}\right), \tag{23}
\end{equation*}
$$

where

$$
\begin{gather*}
Q_{0} \equiv-2 A^{\prime}\left(1+\alpha_{1} r_{s}\right) \tag{24}\\
Q_{1} \equiv 2 A^{\prime}\left(\beta_{1} r_{s}^{1 / 2}+\beta_{2} r_{s}+\beta_{3} r_{s}^{3 / 2}+\beta_{4} r_{s}^{2}\right) \tag{25}
\end{gather*}
$$

and

$$
\begin{equation*}
Q_{1}^{\prime} \equiv A^{\prime}\left(\beta_{1} r_{s}^{-1 / 2}+2 \beta_{2}+3 \beta_{3} r_{s}^{1 / 2}+4 \beta_{4} r_{s}\right) . \tag{26}
\end{equation*}
$$

The gradient correlation terms take the form

$$
\begin{equation*}
\frac{\partial H}{\partial e_{c}}=\frac{\partial H}{\partial A} \frac{\partial A}{\partial e_{c}}, \tag{27}
\end{equation*}
$$

which take the form

$$
\begin{equation*}
\frac{\partial A}{\partial e_{c}}=\frac{A^{2} \mathrm{e}^{-\Delta}}{\beta e^{2} / a_{0}}, \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial H}{\partial A}=-\frac{e^{2}}{a_{0}} \frac{\left(2+A t^{2}\right) A t^{6} \beta \gamma}{\left[\gamma P+\beta\left(t^{2}+A t^{4}\right)\right] P}, \tag{29}
\end{equation*}
$$

with

$$
\begin{equation*}
P \equiv 1+A t^{2}+A^{2} t^{4} . \tag{30}
\end{equation*}
$$

Finally, the gradient correlation terms take the form:

$$
\begin{equation*}
\frac{\partial H}{\partial t}=\frac{e^{2}}{a_{0}} \frac{2 t \beta \gamma\left(1+2 A t^{2}\right)}{\left[\gamma P+\beta\left(t^{2}+A t^{4}\right)\right] P} . \tag{31}
\end{equation*}
$$

The terms involving derivatives with respect to the magnitude of the gradient can also be evaluated using

$$
\begin{gather*}
\mathbf{g}_{x c}(n,|\nabla n|) \equiv h_{x c}(n,|\nabla n|) \nabla n, \text { where } h_{x c}(n,|\nabla n|) \equiv \frac{\partial f(n,|\nabla n|)}{\partial|\nabla n|} \frac{1}{|\nabla n|} . \tag{32}\\
h_{x c}(n,|\nabla n|)=\left(-\frac{3 e^{2}}{8 \pi} \frac{d F(s)}{d s}+\frac{1}{2 k_{s}} \frac{\partial H}{\partial t}\right) \frac{1}{|\nabla n|} . \tag{33}
\end{gather*}
$$

Some of the above expressions must be evaluated with care. For example, since the computer evaluates $1+\epsilon=1$ when $\epsilon<10^{-14}$, or so (less than the machine precision), we define a function

$$
\operatorname{Logofterm}(\mathrm{x})= \begin{cases}\ln (1+x) & \text { for } \quad x>\epsilon \tag{34}\\ x & \text { for } \quad x \leq \epsilon\end{cases}
$$

In addition, the expression for $A\left(\varepsilon_{c}\left(r_{s}, 0\right)\right)$ is evaluated using the function

$$
\operatorname{Aofec}(\mathrm{ec})= \begin{cases}\frac{\beta}{\gamma} \frac{1}{e^{-\Delta}-1} & \text { for } \quad \varepsilon_{c}>\epsilon \tag{35}\\ -\frac{\beta}{\varepsilon_{c} /\left(e^{2} / a_{0}\right)} & \text { for } \quad \varepsilon_{c} \leq \epsilon .\end{cases}
$$

References

[1] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approximation made simple. Phys. Rev. Lett., 77:3865-3868, 1996.
[2] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Erratum. Phys. Rev. Lett., 78:13961396, 1997.
[3] John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson Mark R. Pederson, D. J. Singh, and Carlos Fiolhais. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B, 46:6671-6687, 1992.
[4] John P. Perdew, J. A. Chevary, S. H. Vosko, Koblar A. Jackson Mark R. Pederson, D. J. Singh, and Carlos Fiolhais. Erratum. Phys. Rev. B, 48:4978-4978, 1993.
[5] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B, 45:13244-13249, 1992.

