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We present a stable scheme to calculate continum and bound electronic states in the vicinity of a surface of
a semi-infinite crystal within the framework of density functional theory. The method is designed for solution
of the Kohn-Sham equations in a pseudpotential formulation, including both local and separable nonlocal
contributions. The method is based on the Numerov integration algorithm and uses singular value decompo-
sition to control the exponentially growing contributions. The method has been successfully tested on the Li
�110� surface with and without adsorbed H. For this model system, we are able to locate the energies of
H-induced surface states relative to the corresponding energies of bulk continum states. Results encourage
further development.
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I. INTRODUCTION

In the large literature of surface simulations, the vast ma-
jority of results have been obtained using a supercell ap-
proach in the slab geometry. This approach has been success-
fully used to study ideal clean surfaces as well as surfaces
with adsorbates as discussed in several review monographs
and articles.1–4 The supercell approach has even been used to
model workfunction variations of a material near its facet
edges5,6 and has been recently adapted to model transport
processes.7

In principle, all of these simulations of surfaces and inter-
faces could be formulated in terms of semi-infinite
boundary-value problems which could have several advan-
tages. First, in the semi-infinite formulation there is one
mathematical boundary for each physical boundary, while in
the slab formulation there is an extra mathematical boundary
which may cause unphysical interference effects or spurious
surface features in the results. Secondly, in the semi-infinite
formulation, the full computational effort can be focused on
the interface region itself using knowledge of the bulk con-
tributions as input, while in the slab formulation the bulk is
modeled by the interior layers of the slab. Thirdly, in the
semi-infinite formulation it is possible to directly locate the
surface states relative to the bulk band edges, while in a slab
formulation, the distinction between bulk and surface effects
is more complicated. In summary, the semi-infinite formula-
tion of these surface and interface simulations more closely
represents the physical systems and we expect it to result in
new insights into surface physics which may not be so
readily apparent in other approaches.

In contrast to surface simulations based on the slab for-
mulation, there have been a relatively smaller number based
on the semi-infinite formulation. For example, there is the
pioneering work of Lang and Kohn8,9 on the self-consistent
jellium surface, later extended by Lang and Williams10,11 to
treat an atomic adsorbate on a jellium surface. Appelbaum
and Hamman12,13 developed a method based on a local
pseudopotential formalism and on numerical integration of
the Schrödinger equation in the surface region, matching to a
linear combination of Bloch waves in the interior of the
solid. In order to analyze energetic electrons in low energy

electron emission14–16 or in photoemission.17,18 Green’s func-
tion methods with muffin-tin potential models have been
very successful. Stiles and Hamann19 developed a method
based on constructing a Green’s function from generalized
Bloch states in a linearize augmented plane wave �LAPW�
basis for treating electron transmission through interfaces.20

Other augmented plane wave schemes have recently been
developed by several authors.21–24 In order to self-
consistently determine the electronic and structural ground
state of semiconductor surfaces, Krüger and Pollmann devel-
oped a method based on a Green’s functions expressed in a
Gaussian basis.25 This approach has been quite successful for
studying the lattice relaxation and surface state structure of
several semiconductor surfaces.26,27 Interest in quantum
transport has recently generated several new approaches to
solving the semi-infinite boundary value problem.28–32

As revealed in this previous work, the numerical chal-
lenge of treating the semi-infinite boundary value problem is
to control the exponentially growing solutions present in the
differential equation in a planar representation. For example,
in the work of Choi and Ihm,28 the exponentially growing
solutions were controlled with a rescaling process during the
numerical integration. In the present work, we formulate a
numerical scheme for solving the semi-infinite boundary
value problem using singular value decomposition33 to stabi-
lize the solution. The formalism is presented in Sec. II with
details in the Appendix. The method is used to analyze the
ideal �110� surface of pure Li and Li with H adsorbed at a
bridge site in Sec. III. In Sec. IV the formalism and results
are further analyzed and summarized.

II. FORMALISM

A. Definition of the problem

The Kohn-Sham equations34,35 for the systems of interest
can be assumed to take the following general form:

�H̃�r� − E����̃��r�� + �
aij

�p̃i
a��Dij

a − E�Oij
a ��p̃j

a��̃��r�� = 0.

�1�

Here, the first term represents a local Hamiltonian including
kinetic and potential contributions:
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H̃�r� = −
�2

2m
�2 + ṽ�r� . �2�

The coefficients Dij
a and Oij

a represent nonlocal Hamiltonian
and overlap matrix elements, with a representing an atomic
site index and i , j representing basis function indices
�nilimi ,njljmj�. In our work these coefficients are based on
the projector augmented wave �PAW� formulation of
Blöchl,36–39 however, with trivial modification, they could
also represent the soft-pseudopotential formulation of
Vanderbilt40 or the separable approximation for norm-
conserving pseudopotentials of Kleinman and Bylander.41

The localized functions p̃i
a�r−Ra� �called “projector” func-

tions in the PAW formulation� are centered at atomic sites Ra

and are confined within nonoverlapping spheres of radii rc
a.

The energy eigenvalue is denoted by E� and the correspond-

ing pseudo-wave function is denoted by �̃��r�.
For the surface geometry, we assume that there is period-

icity within the surface plane, so that it will be convenient to
represent the wave functions in two-dimensional plane wave
expansion within each plane parallel to the surface and a
discrete grid along the direction �ẑ� normal to the surface.
The general surface representation of the wave function takes
the form42

�̃���r	,z� =
 1

A�
g

ei��+g�·r	f���g,z� , �3�

where A represents the area of the surface unit cell, � and
�g� represent the surface Bloch and reciprocal lattice vectors,
respectively, and � represents a band or surface state index.
In practice, the summation over �g� is carried out over Ng
surface reciprocal lattice vectors such that ��+g � �Gcut
where Gcut is chosen to control convergence. Our task is to
determine the wave functions components f���g ,z�, which
solve the Kohn-Sham equations for a given energy E�� and
satisfy the semi-infinite boundary conditions of the surface

geometry. Explicitly, this means that �̃���r	 ,z� represents a
decaying or propagating wave function in the vacuum region
of the surface �for E�� below or above the workfunction of
the material, respectively� and represents a linear combina-
tion of Bloch waves or decaying waves in the interior bulk
region of the surface �for E��within the ranges of the bulk
bands or outside those ranges, respectively�. For simplicity
in notation, we will drop the �� indices. The main equations
are presented below and the details are given in the Appen-
dix.

The Kohn-Sham equations �1� for the surface geometry
take the form:

d2f�g,z�
dz2 = �

g�

Vgg��z�f�g�,z� + �
ai

p̄̃i
a�g,z�Ki

a. �4�

The first summation is carried out over Ng surface reciprocal
lattice vectors as discussed above, with the local contribution
defined according to

Vgg��z� � ��� + g�2 −
2m

�2 E�gg� +
2m

�2 v̄̃�g − g�,z� . �5�

Here v̄̃�g ,z� is the two-dimensional Fourier transform of the
local potential is defined in Eq. �A1�. The second summation
in Eq. �4� is carried out over site a and orbital i indices
representing the nonlocal contributions as defined in terms of
the two-dimensional Fourier transform of the projector func-

tion p̄̃i
a�g ,z�, given in Eqs. �A2�–�A4�, and an integral coef-

ficient of the form:

Ki
a � �

j

2m

q2 �Dij
a − EOij

a ��p̄̃ j
a�f� , �6�

where

�p̄̃i
a�f� � �

g
� dzp̄̃i

a *�g,z�f�g,z� � �p̃i
a��̃� . �7�

B. Finite difference formulas

In order to solve Eq. �4�, a uniform grid is constructed
along the surface normal direction, as illustrated in Fig. 1. In
order to stabilize the solution in the presence of exponen-
tially growing solutions of Eq. �4�, the uniform grid is further
partitioned into sections 	=1,2 , . . .
, such that the last two
points of an interior section is the same as the first two points
of the next section:

zN−1
	−1 = z0

	 and zN
	−1 = z1

	 for 	 = 2 ¯ 
 . �8�

The number of grid points in each section �0,1 ,2 , . . . ,N�
should be roughly equal, but not necessarily identical. The
numerical analysis involves solving the differential equation
at each of the grid points �zn

	� and satisfying boundary con-
ditions at the two ends of the analysis region z0

1 ,z1
1 and

zN−1

 ,zN


.
In this initial study, we are first concerned with investi-

gating the stability of the basic algorithm. Therefore, we

FIG. 1. Diagram showing discretized and partitioned z axis.
Circles indicate cross sections of atomic spheres in the plane of the
diagram.
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make the simplifying assumption that all of the atomic
spheres are fully contained between the initial �z1

1� and final
�zN


� end points of the evaluation region. Relaxation of this
restriction causes more complicated indexing and will be
considered in future work.

The solution of the differential equation �4� is approxi-
mated by a two-point recursion relation based on the Nu-
merov method.43 The wave functions coefficients on each
grid point f�g ,zn

	� can be determined from a knowledge of
their values at initial two points of each section according to
an expression of the form:

fn
	 = �

�=1




�Xn0
	�f0

� + Xn1
	�f1

�� , �9�

where the Ng�Ng matrices Xn0
	� and Xn1

	� are given by Eq.
�B11� in the Appendix, and where fn

	 stands for the Ng coef-
ficients f�g ,z�, evaluated at the grid points z=zn

	. In order to
evaluate Eq. �9�, we must determine the values of the wave
function at the interior partition boundaries �z0

	 ,z1
	 for 	

=2¯
� and at the exterior boundaries of the evaluation re-
gion �z0

1 ,z1
1� and �z�N−1�


 ,zN

�. The interior matching conditions

can be summarized by the following equations for 	
=2¯
:

F1
	 = FN

	−1 = �
�=1




	 �F1
� . �10�

Here we have defined the 2Ng vector of wave function coef-
ficients at two consecutive points as

Fn
� � � fn−1

�

fn
� � , �11�

while the 2Ng�2Ng composite matrix relating the beginning
and end point of the partitions is given by

	 � � �X�N−1� 0
	 � X�N−1� 1

	 �

XN 0
	 � XN 1

	 � � . �12�

The corresponding relationship between the points on the
outer boundaries takes the form:

FN

 = �

�=1





 �F1
� . �13�

The determination of the surface wave function thus de-
pends on the solution of the 2Ng
 equations �10� and �13�.
This has to be done with care so that the exponentially grow-
ing solutions of the differential equation do not numerically
swamp the resultant wave function. Therefore, we can write
these 2Ng
 equations as a single 2Ng
�2Ng
 matrix equa-
tion in the form:

XF = G , �14�

where the matrix is given by

X ��
1 1 1 2 − 1 ¯ 1 


2 1 2 2
¯ 2 


� � � �
�
−1� 1 �
−1� 2

¯ �
−1� 
 − 1


 1 
 2
¯ 
 


� , �15�

with the vector F representing the amplitudes at the initial
points of each partition and the vector G representing the
amplitudes at the end of the analysis region given by

F =�
F1

1

F1
2

�
F1



� and G =�

0

0

�
FN



� . �16�

The composite equation �14� is now amenable to stable so-
lution through the use of a singular value decomposition33 of
X:

X = �
s

wsUsVs
†. �17�

Here the real numbers ws represents the “singular values,”
and Us and Vs

† represent the corresponding column and row
vectors, each of dimension 2Ng
. The matrix U formed from
the Us vectors is unitary as is the matrix V formed from the
Vs vectors. For all the systems we have studied so far, we
observe the distribution of singular values to have a very
interesting structure. Namely, half of the singular values have
the values ws�1, while the other half have the values ws
�1. We have no explanation for this structure, but one sus-
pects that it is related to the fact that the second order differ-
ential equation in general has exponentially growing and ex-
ponentially decaying solutions in equal proportion.

Since the vectors Vs span the solution space, we can gen-
erally write

F = �
s

Vs�Vs�F� . �18�

This allows us to formally write the solution of Eq. �14� as

F = �
s

Vs

�Us�G�
ws

. �19�

In practice, it will be important to control the effects of the
very small singular values ws which appear in the denomi-
nator of this expression. The corresponding relation between
the outer boundary values is given by

F1
1 = �

s

Vs
1 �Us


�FN

�

ws
, �20�

where Vs
1 denotes the first 2Ng components of the singular

vector Vs and Us

 denotes the last 2Ng components of the

singular vector Us.
We are now ready to solve particular surface boundary

value problems by specifying the appropriate conditions on
the end values F1

1 and FN

. The generalized Bloch conditions

appropriate for analyzing the bulk material and the surface
boundary conditions are described separately below.
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C. Generalized Bloch boundary conditions

In this case, the analysis region represents the periodic
repeat unit of the bulk system which we will denote as c
=zN


−z1
1. The corresponding generalized Bloch boundary

condition for the wave function coefficients f�g ,z� takes the
form

fq�g,z + c� = eiqcfq�g,z� , �21�

where the surface wavevector q may be complex. For the
discretization shown in Fig. 1, the Bloch condition applied to
the two-point boundary functions at the beginning and end of
the analysis region is given by

FNq

 = eiqcF1q

1 . �22�

Using this relation in Eq. �20�, we can derive an eigenvalue
relation for the wave function components F1

1. The solutions
of physical interest are those which correspond to propagat-
ing Bloch waves or those decaying within bulk region. Using
the convention that the bulk material is in the region z→
−� while the vacuum is in the region z→�, this corresponds
to surface wavevectors q with Im�q��0. Using Eqs. �20� and
�22�, the generalized Bloch solutions can be written as a
2Ng�2Ng eigenvalue problem in the form

MBF1q
1 = �qF1q

1 with �q = e−iqc. �23�

Each eigenvector F1q
1 determines the 2Ng components of ini-

tial wave function components and the matrix is given by

MB � �
s

1

ws
Vs

1Us

†, �24�

where the small singular values are modified according to
ws→min�ws ,��, where � is an appropriate tolerance for
small singular values. The small singular values �ws��� de-
termine the eigenvalues �q which correspond to the
wavevectors with Im�q��0 and which are not needed for
describing the physical wave functions in the current geom-
etry. We will discuss appropriate choices for � in Sec. IV A
below.

Once the eigenvectors F1q
1 are determined, the corre-

sponding wave function coefficients fn,q
	 can be calculated

from Eq. �9� using the initial values vector Fq evaluated
from Eq. �19� which, in this case, can be written

Fq = �
s

Vs

eiqc�Us

�F1q

1 �
ws

. �25�

The solutions of interest are those with generalized Bloch
wavevectors q corresponding to waves propagating or decay-
ing to the bulk solid �Im�q��0�. For convenience, the wave
functions are all normalized to unity when integrated over
the unit cell. The corresponding form for the PAW formalism
is given by

�
g
�

0

c

dz�fq�g,z��2 + �
aij

�fq�p̄̃i
a�Oij

a �p̄̃ j
a�fq� = 1. �26�

For propagating waves �Im�q�=0� normalized in this way,
the corresponding current along the surface normal is given
by

Jq = J̃q + �
aij

�fq�p̄̃i
a�Jij

a �p̄̃ j
a�fq� , �27�

where the smooth contribution is given by

J̃q �
q

m
�

0

c

dz Im��
g

fq
*�g,z�

�

�z
fq�g,z�� , �28�

and the atom-centered contributions are given in terms of the
all-electron �i

a�r� and pseudo �̃i
a�r� atomic basis functions

Jij
a �

�

m
�

r�rc
a

d3r Im��i
a*�r�

�

�z
� j

a�r� − �̃i
a*�r�

�

�z
�̃ j

a�r�� .

�29�

D. Semi-infinite boundary conditions

1. Continuum solutions

In this case, the analysis region represents the interface
between the bulk material which exists in the region z�z1

1

and the vacuum region which exists in the region z�zN

. For

simplicity, we will restrict consideration to energies E below
the vacuum level and thus to states which carry no net cur-
rent. Extension of the analysis to the description of current-
carrying states should be straightforward.

Since for z�z1
1 the system is assumed to be identical to

that of the bulk material, we expect the wave function to be
described by a linear combination of propagating and decay-
ing Bloch waves which can be written in the form:

f�g,z� = f0�g,z� + �
p

fp�g,z�Rp + �
d

fd�g,z�Dd. �30�

Here f0�g ,z� represents a propagating Bloch wave with cur-
rent J0�0 �flowing from the bulk toward the vacuum re-
gion�, fp�g ,z� represents a propagating Bloch wave with cur-
rent Jp�0 �reflected from the surface�, and fd�g ,z�
represents Bloch wave decaying into the bulk with wavevec-
tor Im�d��0. The unknown coefficients �Rp� and �Dd� are to
be determined. The corresponding expression for the bound-
ary value F1

1 vector is given by

F1
1 = F10

1 + �
p

F1p
1 Rp + �

d

F1d
1 Dd. �31�

Since we are assuming that the solution has no net current,
this constrains the reflection coefficients �Rp� to satisfy the
condition

J0 + �
p

Jp�Rp�2 = 0, �32�

where the current Jq in the surface normal direction is deter-
mined by Eq. �27�.

In the vacuum region, we generally can write the wave
function as a linear combination of Ng distinct solutions in
the form
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f�g,z� = �
g0

fg0

vac�g,z�Cg0

vac for z � zN

 , �33�

where the coefficients �Cg0

vac� need to be determined. An ex-
ample of the form of fg0

vac�g ,z� is discussed in Appendix C.
The interface-vacuum boundary values then take the form

FN

 = �

g0

Fg0

vacCg0

vac � FvacCvac, �34�

where the coefficients �Cg0

vac� are to be determined and the
vector short hand notation is defined for convenience. This
expression can be substituted into the right hand side of Eq.
�20�, while the left hand side should be given by the bulk
form �31�. In fact, Eq. �20� represents 2Ng equations, which
is larger than the number of unknown coefficients
�Rp� , �Dd� , �Cg0

vac�. In addition, we need to satisfy the con-
straint condition �32�. Therefore, we choose to satisfy Eq.
�20� in the least squares sense and to use a Lagrange multi-
plier to satisfy the current constraint �32�. In preparing the
least-squares equations, we note that the right hand side of
Eq. �20� includes, in principle, the summation over all of the
singular values ws of the composite matrix X. In this case, it
is the small values of ws which are important for the solution.
Therefore, we rescale the expression in terms of the smallest
singular value; w0�min�ws�. It is then convenient to define a
2Ng�Ng auxiliary matrix

Mvac � �
s

w0

ws
Vs

1�Us

�Fvac� . �35�

In this expression, all of the singular values are included; for
the smallest contributions w0 /ws�1 and for the problematic
large singular values the contribution w0 /ws�1 will be neg-
ligible. In order to further stabilize the solution, we make
another singular value decomposition on the matrix �35�
which takes the form

Mvac = �
t

wt
vacUt

vacVt
vac†. �36�

Here the vectors Vt
vac have dimension Ng and span the space

of the vacuum coefficients �Cg0

vac�, while the vectors Ut
vac

have dimension 2Ng and span the space of boundary values
F1

1.
The �2 equation corresponding the boundary matching

condition �20� then can be written

�2 = �F1 0
1 + �

p

F1 p
1 Rp + �

d

F1 d
1 Dd − �

t

Ut
vacC̃t

vac�2
.

�37�

Here, the coefficients �C̃t
vac� are related to the previously

defined vacuum coefficients in Eq. �34� according to

Cvac = �
t

Vt
vac w0

wt
vacC̃t

vac. �38�

The equations to minimize �2 with the current constraint
�32� involve varying Np reflection coefficients �Rp�, Nd decay

coefficients �Dd�, and Ng vacuum solution coefficients �C̃t
vac�.

It can be formulated as an iterative solution of a set of linear
equations

MC���XC = X0
C, �39�

where the matrix MC��� includes the Lagrange multiplier �
in the form

MC��� = M0
C + �Jp�pp�. �40�

Here M0
C is defined in Eq. �D1� and X0

C is defined in Eq.
�D2�. The solution vector is

XC � �Rp

Dd

C̃t
vac� . �41�

In each of these expressions, the indices p and p� represent
Np terms, the indices d and d� represent Nd terms, and t and
t� represent Ng terms. The equations are solved for an initial
value for the Lagrange multiplier �usually �=0� and then
iterated to convergence using the increment

�� =
− �J0 + �p

Jp�Rp�2�

�p
2Re�Jp � Rp

*/���
, �42�

where �Rp
* /�� is determined by taking the � derivative of

the matrix equation �39�. In the example system presented
below, we find ��0 for all the choices of E and � consid-
ered.

Once the coefficients are determined, the interface wave
function coefficients fn

	 can be calculated from Eq. �9� using
the initial values vector F given in Eq. �19� which can be
calculated from

F = �
s

Vs
w0

ws
�

t

�Us

�FvacVt

vac�C̃t
vac

wt
vac . �43�

2. Surface state solutions

This case is very similar to the continuum states consid-
ered above except that for the fact that there are no propa-
gating Bloch states at a given surface wavevector � and en-
ergy range, allowing for the possibility that new “surface”
states which decay within the bulk material to exist in the
surface region.

In this case, the wave function in the bulk region is ex-
pected to have the form

f�g,z� = �
d

fd�g,z�Dd, �44�

using the same notation as Eq. �30�. The corresponding ex-
pression for the boundary value vector F1

1 is given by

F1
1 = �

d

F1d
1 Dd, �45�

The interface-vacuum matching condition is the same as in
Eq. �34�. Consequently, we can use the same analysis of the
auxiliary matrix Mvac discussed above.
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The �2 equation for the boundary matching condition is
then given by

�2 = ��
d

F1 d
1 Dd − �

t

Ut
vacC̃t

vac�2
. �46�

In the surface case, the constraint we need to impose by
using Lagrange multipliers comes from the wave function
normalization condition

�
g
�

−�

�

dz�f�g,z��2 + �
aij

�f �p̄̃i
a�Oij

a �p̄̃ j
a�f� = 1. �47�

The equations to minimize �2 in Eq. �46� with the nor-
malization constraint �47� can be expressed as a generalized
eigenvalue problem:

MSXl
S = �lSXl

S, �48�

where the matrices MS and S are given in Eqs. �E1� and �E2�
and where the eigenvector Xl

S contains the coefficients

Xl
S = ��Dd�

�C̃t
vac�

� . �49�

Since both the �2 and the normalization condition are bilin-
ear forms, we have the very convenient result that for any
given energy E and wavevector �,

min��2� = �0, �50�

where �0 is the smallest eigenvalue of Eq. �48�. A physical
solution of the equations will correspond to min��2���S,
where �S is a small tolerance which occurs at special energies
indicating a surface state.

III. EXAMPLE SYSTEM—LI (110) WITH AND WITHOUT
ADSORBED H

In order to test and evaluate the formalism, we have cho-
sen to study the clean and hydrogenated Li �110� surface.
This system has been studied by several authors both by
experiment44–46 and by simulation.47–54 The experiments in-
dicate that at low temperatures �T�160 K� the clean Li
�110� surface has no reconstruction and negligible relaxation.
Sprunger and Plummer44 showed at T=160 K, atomic H
chemisorbs to form a “surface hydride.” At higher tempera-
tures the H diffuses into the bulk to form a bulk hydride.
Quantum chemical techniques and cluster models have been
used to simulate H adsorption on Li �110�. These
studies47,48,54 indicate that the “bridge” position is the most
stable adsorption site. Slab models have been used to study
the work function of the Li �110� surface49,50 and the forma-
tion of image potential states.51,53,55

The PAW functions used in this calculation were gener-
ated using the ATOMPAW code38 with an rc=2.21 bohr for Li
�2s 2p valence states� and rc=0.81 bohr for H �1s valence
states�. The exchange correlation functional was the local
density approximations �LDA� of Perdew and Wang.56 The
bulk and slab results were generated using the PWPAW
code.39 The results for the generalized Bloch states and the
interface and surface states were generated using the new

code described in this paper. Brillouin zone integration was
approximated with a uniform 16�16 sampling grid in the
surface plane and equivalent sampling along the c axis for
the bulk calculations. The zero of the energy scale for the
results quoted in this section is taken to be that of the bulk
Fermi level. The pseudowave functions were well-converged
using the three-dimensional plane wave cutoff of Gcut
=4 bohr−1. Equivalent convergence of the pseudo-wave
functions was obtained in the surface geometry using the
two-dimensional plane wave cut-off of Gcut=3 bohr−1 and an
integration step size of hz=0.224 bohr.

A. Geometry

Since Li has the bcc structure, the repeat unit of the sur-
face normal is c=
2a, where a denotes the cubic lattice con-
stant �taken to be a=6.337 bohr.57 It is convenient to choose
the surface translation vectors to be

T1 = a�+ 
1
2 x̂ + 1

2 ŷ�

T2 = a�− 
1
2 x̂ + 1

2 ŷ� . �51�

The surface reciprocal lattice vectors are given by

G1 =
�

a
�+
1

2
x̂ + ŷ�

G2 =
�

a
�−
1

2
x̂ + ŷ� . �52�

The Li atoms within a bulk unit cell are located at

�1 = a
4 �+ ŷ + 
2ẑ�

�2 = a
4 �− ŷ − 
2ẑ� . �53�

A projection of the surface geometry in the y−z plane
�also including the adsorbed H positions� is shown in the
insert of Fig. 2.

B. Calculation of Bloch states

A simple test of the generalized Bloch formalism is to
compare the band dispersions E�� ,q� obtained from a three-
dimensional band structure calculation with that obtained
from Eq. �23� for special eigenvalues corresponding to

Im�q�=0. This is shown in Fig. 3 for � at the �̄ and H̄ as
indicated. The comparison is very good.

In order to get a more complete picture of the energy
spectrum of our system including both bulk and surface ef-
fects, it is helpful to recognize that the wavevector in the
surface normal direction q is no longer a good quantum num-
ber. It is, therefore, convenient to visualize the band structure
projected into the surface Brillouin zone. That is, for each �
within the surface Brillouin zone, we plot all energies E���
within the energy range
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E��,q0� −
�E��,q0�

�q
�q � E��� � E��,q0� +

�E��,q0�
�q

�q ,

�54�

for a uniform grid of 0�q0�� /c, with �q chosen as the

grid spacing, as shown in Fig. 4 along the H̄− �̄− N̄ direc-
tions. The unshaded energy ranges of the diagram indicate
where surface states can exist. These results are very similar
to previous work of Chulkov and co-workers.51

C. Results obtained using slab supercell

Since, in the present work we are focusing on evaluating
the properties of the method itself, we “cheat” and use the
slab formalism to generate a self-consistent potential. This
also allows us to make a direct comparison of the slab results
with the results from our semi-infinite boundary formulation.
The slab calculations were constructed with eight layers of
Li and four vacuum layers. Since lattice relaxation has been
found to be very small for this system50 it was neglected in
the present work. In addition to considering the pure mate-
rial, we also considered H adsorption at the “bridge” site.
The H atoms were placed at a height of 1.24 bohr from plane
of the surface Li atoms, corresponding to a LiuH bond
length of 3.01 bohr. This height for the H adsorbates was
found to be approximately the most stable when the Li po-
sitions were held fixed the slab simulations. The g=0 com-
ponent of the effective potential for the Li �110� and Li
�110�/H slabs �plain and decorated lines, respectively� are
shown in Fig. 2 for z�0. The calculated workfunction for
ideal Li �110� is 3.0 eV, 10%–20% lower than earlier
calculations.49,50,59 With adsorbed H, in the assumed geom-
etry, the work function increases to 6.0 eV.

The partial densities of states �weighted by the charge
within each augmentation sphere� at the interior Li sites �full

lines� and H sites �dashed line� for both the hydrogenated
and ideal surface slab models are presented in Fig. 5. We see
that the H contributions are in the continuum region of the
spectrum ranging in energy from the bottom of the valence
band to approximately −0.5 eV. In order to get a more de-
tailed picture of the Li �110� and Li �110�/H surfaces in the
slab models, we can also plot the energy bands of the slab
which are shown in Fig. 6. The similarity between the slab
spectrum and that of the projected surface bands shown in
Fig. 4 is evident, although there are differences in the details.
Comparing the spectrum the slabs with and without H, we
see evidence of H-derived surface states at the boundaries of
the surface Brillouin zone.

D. Continuum states with semi-infinite boundary conditions

The effective potential for the interface model was con-
structed from the results of the self-consistent slab and bulk
calculations. Figure 2 shows the model potentials for g=0.
We used the potential derived from four layers of the slab
calculation for z�0 and the bulk potential for z�0. The zero
of energy was adjusted so that the potential is continuous at
z=0 and corresponds to the Fermi level of the bulk material.
Using the formalism presented in Sec. II D 1, we can gener-
ate the pseudo-wave function components f�g ,z�. Figure 7
shows plots of the pseudo-wave function densities

��g � f�g ,z��2� at the �̄ point at various energies within the
continuum range, comparing the effects of the ideal termina-

FIG. 3. Energy dispersion for propagating Bloch states as a
function of surface wavevector q for two different values of � as
indicated. The empty circles indicate results obtained from the
three-dimensional plane wave representation using the PWPAW
code. The filled circles represent results obtained from Eq. �23�. The
insert shows a diagram of the surface Brillouin zone for the bcc
�110� system �Ref. 58�.

FIG. 2. Plot of the g=0 component of the effective potential for
the Li �110� interface with and without H adsorbate attached at the
“bridge” sites �line with filled circles and plain line, respectively�.
For z�0, the potentials were generated from self-consistent slab
calculations, matched for z�0 with the potential of the bulk mate-
rial. The insert shows the geometry of the interface atoms projected
in the y−z plane, the Li atoms indicated with large spheres and the
adsorbed H atoms indicated with small spheres.
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tion with that of H adsorption. For this set of wave functions,
we see that H has a quantitative but not qualitatively effect
on the shape of the wave function density.42 Not surprisingly,
as energy increases the spatial modulation frequency also
increases for these wave functions.

E. Surface states

Using the same model potentials �Fig. 2�, we also
searched for surface states outside the continuum region.
Figure 8 shows a plot of the minimum �2 as a function of
energy. The sharp minimum of the plot corresponds to a
surface state. The �2 decreases at higher energies indicating
the onset of the continuum at E�0.

For the ideal Li �110� surface, we found no surface states.
Chulkov and co-workers51 found surface states in the unoc-

cupied band-gap near the �̄ point in the presence of an image
potential model. Our results suggest that these states do not
exist in the absence of an image potential. In the presence of
adsorbed H, we found surface states at the energies indicated

in Fig. 4 in both the H̄− �̄ and N̄− �̄, directions. The
H-induced surface states energies found in the semi-infinite
analysis is shifted by approximately 0.3 eV relative to those
found in the slab model �Fig. 6�. Tests on larger slabs suggest
that this energy shift is an indication that the interior of the
eight-layer slab has not quite converged to a quantitative
representation of bulk Li �110�. By varying the integration
step size and other calculational parameters, We estimate that
the surface state energies within this model are determined
within an error of approximately ±0.01 eV. Figure 9 shows
the pseudo-wave function densities ��g � f�g ,z��2� for some of

those surface states along the N̄− �̄, at the indicated energies.

Not surprisingly, we see that the surface state at the N̄ point
at E=−0.99 eV is well-localized at near the surface-vacuum

interface. For � further toward the �̄ point where the surface
band becomes energetically closer the bulk bands, the sur-
face wave functions increase their extension within the bulk
of the crystal.

FIG. 4. Smear plot for bulk Li in the �110� surface geometry
�vertical lines� obtained using Eq. �54�. Also shown in this plot are
H-induced surface states �filled circles� found for the Li �110�/H
system.

FIG. 5. Plot of the partial densities of states �DOS� for the
eight-layer Li �110� and Li �110�/H slabs �upper and lower, respec-
tively�, calculated using a Gaussian broadening coefficient of
0.2 eV. The full lines represent the DOS weighted by the average
charge within spheres at the interior Li sites, while the dashed line
represents the DOS weighted by the average charge within spheres
at the H sites.

FIG. 6. Band structure diagram of eight-layer Li �110� slabs
without �left� and with �right� adsorbed H.

Y. B. ABRAHAM AND N. A. W. HOLZWARTH PHYSICAL REVIEW B 73, 035412 �2006�

035412-8



IV. DISCUSSION AND CONCLUSIONS

A. Sensitivity of results to calculational parameters

The results presented in Sec. III above were all obtained
with Gcut=3 bohr−1, corresponding to Ng=19 and hz=0.224
or 0.112 bohr. The surface state energies shifted by 0.01 eV
or less with the smaller step size. For the continuum solu-
tions, the number of propagating waves for all states in the
energy range considered was always Np=1. The number of
decaying waves Nd was chosen such that 0� Im�q�
�10 bohr−1 corresponding to Nd�4. The number of parti-
tions used in the calculation 
 was chosen as eight in the
bulk region and 16 in the interface region which is roughly
twice as large. The value of singular value cutoff for the
generalized Bloch equations in Eq. �24� was chosen to be �
�10−7−10−10. Decreasing 
 by a factor of 2, decreasing hz
by a factor of 2 or increasing Gcut=4 bohr−1, each gave es-
sentially the same results, showing that at least in this limited
range, the formulation is quite stable. What changes in each
of these cases is the distribution of the singular values �ws� as
defined in Eq. �17�. Using more partitions 
 or small step
sizes hz generally decreases the value of the maximum sin-
gular value ws. However, in most of the cases, 3%–10% of
the singular values ws are smaller than machine precision
and presumably their accuracy is uncontrolled. For the gen-
eralized Bloch solutions, these small singular values are fil-
tered out of the analysis as explained above. However, for

the interface solutions, this small singular values appear as a
ratio w0 /ws as defined in Eq. �35�. While, by definition,
w0 /ws�1, it is worrisome that these small values of ws are
not numerically well-defined. In fact, we find that the mag-
nitudes of these singular values are not important so that we
can reset all the small values to ws=min�ws ,��. Apparently,
what is important about these contributions is that the corre-
sponding singular vectors Vs and Us are rigorously orthogo-
nal to those of the large singular values which contribute to
the solution with a very much smaller weighting.

B. Further work to be done

While the results presented here are quite encouraging,
further stability tests on more complicated structures will be
needed to check the generality of the formalism. In addition,
more analysis will be needed to include structures with aug-
mentation spheres intersecting the boundaries of the analysis
region. The complete formalism will also need to include
self-consistency iterations which include the calculation of
the interface charge density and the corresponding surface
potential at each iteration, together with a scheme to stabilize
the iterations. In addition, the entire method will need to be
optimized for computational efficiency.

C. Summary

We have presented a stable scheme to calculate the elec-
tronic structure of surfaces and interfaces formulated as a
semi-infinite boundary value problem. The method is based
on the Numerov integration algorithm43 and uses singular
value decomposition33 to control the exponentially growing
contributions. The method is designed to work with the PAW
formulation36–39 of the Kohn-Sham equations, but can also
be used with the soft-pseudopotential formulation of
Vanderbilt40 or with norm-conserving pseudopotentials ap-
proximated with separable nonlocal terms such as the form
of Kleinman and Bylander.41 The method has been success-
fully tested on the Li �110� surface with and without ad-

FIG. 7. Plot of the pseudo-wave function density in for Li �110�
�full line� and Li �110�/H �dashed line� at various energies within

the continuum spectrum at the �̄ point.

FIG. 8. Plot of �2=�0 for Li �110�/H as a function of E at �

=N̄ showing a surface state at E=−0.99 eV and the bulk band edge
at E�0 eV.
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sorbed H, showing both continuum and surface state wave
functions. The results are very encouraging.

ACKNOWLEDGMENTS

This work was supported by NSF Grant No. DMR-
0427055 and by Wake Forest University’s DEAC high-
performance computing facility. We would like to thank Pro-
fessor V. Paúl Pauca for helpful discussions.

APPENDIX A: BASIC DEFINITIONS

The two-dimensional Fourier transform of the local po-
tential in Eq. �5� is given an integral over the surface unit cell
of the form

v̄̃�g,z� =
1

A � d2r	e−ig·r	ṽ�r	,z� . �A1�

The two-dimensional Fourier transform of the projector
function used in Eq. �5� is defined as

p̄̃i
a�g,z� �
 1

A � d2r	e−i��+g�·r	

p̃nili
a ��r − Ra��

�r − Ra�
Ylimi

�r − Râ� ,

�A2�

where p̃nili
a �r� is the radial projector function such as deter-

mined in the ATOMPAW code,38 and Ylimi
�r̂� is a spherical

harmonic function. The integral can be evaluated using

p̄̃i
a�g,z� = Nlimi

a �� + g��
�z−Za�

Rc
a

drpnili
�r�Pli

�mi�� z − Za

r
�

�J�mi�
��� + g�
r2 − �z − Za�2� , �A3�

where Pli
�mi��u� represents an Associated Legendre function,

J�mi�
�u� represents a Bessel function of integer order, and

Nlimi

a �� + g� � e−i��+g�·R	
a� �� + g�x

�� + g�
+ i

�� + g�y

�� + g� mi

�e−imi�/2
��2li + 1�
A 
�li − �mi��!

�li + �mi��!
.

�A4�

APPENDIX B: FINITE DIFFERENCE FORMULAS

The Numerov algorithm involves terms from the local and
nonlocal contributions of the equation. For the local contri-
butions, the two-point recursion formula can be written in
terms of Ng�Ng matrices:

Cn r
	 = − �An

	�−1�An−2
	 Cn−2 r

	 + Bn−1
	 Cn−1 r

	 � , �B1�

where r=0 or r=1, with special values:

C0 0
	 = C1 1

	 = �g,g�, C0 1
	 = C1 0

	 = 0. �B2�

Here,

An
	 � Ag,g��zn

	� = �gg� −
hz

2

12
Vgg��zn

	� �B3�

and

Bn
	 � Bg,g��zn

	� = − 2�gg� −
10hz

2

12
Vgg��zn

	� . �B4�

In these expressions, Vgg��zn
	� has been defined in Eq. �5� and

hz denotes the uniform z mesh spacing.
The nonlocal terms involve a few more intermediate

steps. First, for each atom site a and basis orbital index i, we
can make the following recurrence relation for vectors of
length Ng

Di
a�zn

	� = �An
	�−1�Pi

a�zn
	� − An−2

	 Di
a�zn−2

	 � − Bn−1
	 Di

a�zn−1
	 �� ,

�B5�

where the gth coefficient of Pi
a�zn

	� is given by

Pi g
a �zn

	� =
hz

2

12
�p̄̃i

a�g,zn−2
	 � + 10p̄̃i

a�g,zn−1
	 � + p̄̃i

a�g,zn
	��

�B6�

with special values

Pi
a�z0

	� = Pi
a�z1

	� = Di
a�z0

	� = Di
a�z1

	� = 0. �B7�

The first two conditions follow from our simplifying as-
sumption about the geometry of the system mentioned in

FIG. 9. Plot of the pseudo-wave function density for surface

states for Li�110� /H along the N̄− �̄ direction of the surface Bril-
louin zone at the indicated energies and surface reciprocal lattice
vectors �given in terms of fractions of the reciprocal lattice vectors
listed in Eq. �52��.
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Sec. II B, while the second two are consistent boundary con-
ditions. In order to evaluate the nonlocal coefficient �6�, it is
convenient to define the composite projector function

q̄̃i
a�g,z� � �

j

2m

q2 �Dij
a − EOij

a ��p̄̃ j
a�g,z��*, �B8�

which, like p̄̃i
a�g ,z� is nonzero only in the region Za−rc

a�z
�Za+rc

a. An atom-centered coupling matrix is determined by
a piecewise continuous integration defined by

Zij
ab � �

	=1


 �
z1
	

zN
	

dz�
g

q̄̃i
a�g,z�D j g

b �z� , �B9�

and an interaction term between the atom-centered and local
contributions within the partition � is defined by the follow-
ing vector function in g space �with dimension Ng�:

Y j r
b �

g � �
z1
�

zN
�

dz�
g�

q̄̃ j
b�g�,z�Cr g�g

� �z� . �B10�

Here we have used the notation Cr g�g
� �zn

���Cn r
� �g�g. The in-

tegrals in Eqs. �B9� and �B10� are evaluated numerically
using the uniform grid points �zn

��. In terms of these func-
tions, the Ng�Ng matrix Xnr

	� defined in Eq. �9� can then be
written as

Xnr
	� = Cn r

	 �	� + �
ai bj

Di
a�zn

	��I − Z�ai,bj
−1 Y j r

b �. �B11�

APPENDIX C: WAVEFORMS IN THE VACUUM
REGION

In the vacuum region, z�zN

, we assume there are no

atoms so that the potential is purely local. In general, there
will be Ng distinct physical solutions corresponding to each
reciprocal lattice vector which we label g0. In the present
work, we consider the simpliest case, assuming that for z
�zN


 the system is described by a constant potential

v̄̃�g,z� = v��g,0 for z � zN

. �C1�

The corresponding vacuum wave functions take the form

fg0

vac�g,z� = e−�g0
z�gg0

, �C2�

where

�g0
�
�� + g0�2 +

2m

q2 �v� − E� , �C3�

assuming that E�v�. The form of fg0

vac�g ,z� can easily be
generalized to represent more complicated vacuum potentials
such as those which contain image potential
contributions.51,53,55

APPENDIX D: DETAILS OF CONTINUUM SOLUTIONS

The matrix and vector defined in Eq. �39� are defined as
follows:

M0
C ��+ �F1p

1 �F1p�
1 � + �F1p

1 �F1d�
1 � − �F1p

1 �Ut�
vac�

+ �F1d
1 �F1p�

1 � + �F1d
1 �F1d�

1 � − �F1d
1 �Ut�

vac�

− �Ut
vac�F1p�

1 � − �Ut
vac�F1d�

1 � + �Ut
vac�Ut�

vac�
� .

�D1�

The inhomogeneous term takes the form

X0
C � �− �F1p

1 �F10
1 �

− �F1d
1 �F10

1 �
+ �Ut

vac�F10
1 �
� . �D2�

APPENDIX E: DETAILS OF SURFACE STATE
SOLUTIONS

The matrices in Eq. �48� are defined as follows:

MS ��+ �F1d
1 �F1d�

1 � − �F1d
1 �Ut�

vac�

− �Ut
vac�F1d�

1 � + �Ut
vac�Ut�

vac�
� . �E1�

In this expression the braket notation is used to represent the
inner product of the complex vectors �F1d

1 � and �Ut
vac� The

overlap matrix takes the form

S � ��fd�fd�� 0

0 �f t�f t��
� . �E2�

In this expression the braket notation is used to represent the
integrals

�fd�fd�� � �
−�

z1
1

dz�
g

fd
*�g,z�fd��g,z� + �

aij

�fd�p̄̃i
a�Oij

a �p̄̃ j
a�fd��

�E3�

and

�f t�f t�� � �
z1
1

�

dz�
g

f t
*�g,z�f t��g,z� + �

aij

�f t�p̄̃i
a�Oij

a �p̄̃ j
a�f t�� .

�E4�

In this expression, f t�g ,z� is determined for z1
1�z�zN


 from
Eq. �9� using the boundary value coefficients

Ft = �
s

Vs
w0

ws

�Us

�FvacVt

vac�
wt

vac , �E5�

and for z�zN

, by

f t�g,z� =
w0

wt
vac�

g0

fg0

vac�g,z�Vg0t
vac. �E6�
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