N. Lepley

Motivation

Overview Li₃PX₄

Materials

Energetics

Interfaces Vacuum

Surface structure and stability in Li_3PS_4 and Li_3PO_4 electrolytes from first principles

N. Lepley

Wake Forest University

APS March Meeting 2013

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

N. Lepley

Motivation Overview

Li₃PX₄

Structure Energetics

Interfaces Vacuum Li Metal

1 Motivation

Solid Electrolytes Li₃PS₄ and Li₃PO₄

2 Materials Structure

Energetics

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Energetics

Interface

Vacuum

Motivation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

N. Lepley

Motivation

Overview

Structure

Energetics

Interfaces Vacuum

Solid Electrolytes: The Basics

Solid electrolytes show considerable promise for advancing battery technology

- Improved safety characteristics
- Allow novel electrodes (e.g. LiS)
- Li (thio)phosphate materials most interesting

Primary electrolyte properties are:

- Stability
- Inteface stability
- Ionic Conductivity

Tesla Model S

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Energetics

Interfaces

Li Metal

Solid Electrolytes: Li₃PX₄

- Relatively stable stoichiometry
- Traditionally low conductivity
- Nanoporous highly-conducting phase of Li₃PS₄ recently produced¹
- Details of this phase's properties and the mechanism of phase transition and stabilization need further investigation
- Extend previous modelling work on Li₃PO₄

$\begin{array}{l} {\sf Li}_3{\sf PX}_4{\rm : \ Bulk} \\ {\rm and \ Surface} \end{array}$

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

. . .

Interface

Vacuum

Materials

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Energetics

Interfaces Vacuum Li Metal

2 Phases of interest for both materials

- Pmn2₁ symmetry
- Pmna symmetry

$Pmn2_1$:

N. Lepley

Motivation

Overview Li₃PX₄

Materials

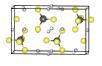
Structure

Energetics

Interfaces

Vacuum Li Metal

2 Phases of interest for both materials


- Pmn2₁ symmetry
- Pmna symmetry
 - Li₃PS₄ exhibits fractional occupancy

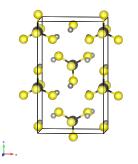
 $Pmn2_1$:

N. Lepley

Motivation

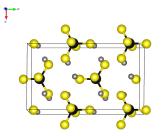
Overview Li₃PX₄

Materials


Structure

Energetics

Interfaces


Vacuum Li Metal

$Pmn2_1$:

 $Pmn2_1$:

Phase relationship

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Double b lattice vector
- Interchange a and b

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

- Multiple phases of interest
- Pmn2₁ expected to be most stable at 0K
- Energy difference on the order of $k_BT(\sim 0.025 \text{ eV } \mathbb{Q} \text{ RT})$

Material	ΔН
Li_3PO_4 -Pmn 2_1	-21.41
Li ₃ PO ₄ -Pmna	-21.38
Li_3PS_4 -Pmn 2_1	-8.36
Li ₃ PS ₄ -Pmna(b)	-8.28
Li_3PS_4 -Pmna(c)	-8.24

Li₃PX₄: Bulk and Surface

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure Energetics

Interfaces

Li Metal

$\begin{array}{l} {\sf Li}_3{\sf PX}_4{\rm : \ Bulk} \\ {\rm and \ Surface} \end{array}$

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Energetics

Interfaces

Vacuum Li Motal

Interfaces

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Li₃PX₄: Bulk and Surface

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Energetics

Interfaces

Vacuum

- Highly conducting nanoporous phase is Pmna symmetry
- Surface energy effects may contribute to the stability.
- Good interfaces are crucial to electrolyte performance

N. Lepley

Surface Energy

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivation

Overview Li₃PX₄

Materials

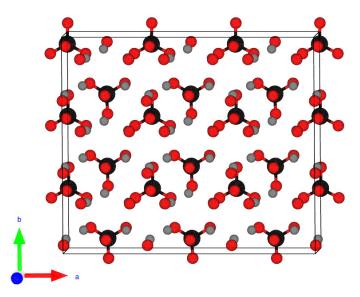
Structure

Energetics

Interfaces

Vacuum Li Metal

In the presence of a surface the total energy is defined as


Surface Energy

 $\mathsf{E}_{\textit{total}} = \mathsf{N} \cdot \mathsf{E}_{\textit{Form. Unit}} + \gamma \cdot \mathsf{A}$

For the bulk, A=0 and this reduces to:

 $\mathsf{E}_{\textit{total}} = \! \mathsf{N} \! \cdot \! \mathsf{E}_{\textit{Form. Unit}}$

Cleavage Planes

 $\begin{array}{c} {\sf Li}_3{\sf PX}_4{\rm :} \ {\sf Bulk} \\ {\sf and} \ {\sf Surface} \end{array}$

N. Lepley

Motivation

Overview Li₃PX₄

Materials Structure

Interfaces

Vacuum

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Energetics

Interface

Vacuum

Surface Energies

Surface Energies

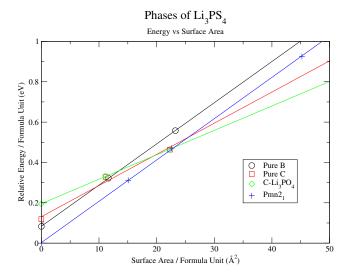
Material	Phase	Plane	Sigma($eV/Å^2$)
Li ₃ PS ₄	Pmn21	[010]	0.021
	Pmna(b)	[100]	0.020
	Pmna(c)	[100]	0.015
	Pmna(c)-Li ₃ PO ₄	[100]	0.012
Li ₃ PO ₄	Pmn21	[010]	0.039
	Pmna	[100]	0.040
	Pmna	[010]	0.073
	Pmna	[100]*	0.078

Surface energies in eV per square angstrom for select faces. [100]* denotes a [100] surface that is not flat, but has an additionall Li_3PO_4 group protruding from the [100] face.

Motivation

Overview Li₃PX₄

Materials


Structure

Energetics

Interfaces

Vacuum

Li₃PS₄ phases in nanofilms

Total energy as a function of surface area for select phases of Li₃PS₄.

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Ellergenes

Interface: Vacuum

Li Metal

- Stability relative to Li electrode modelled directly
- Li₃PO₄ predicted stable relative to Li metal

Interface with Li: Li₃PO₄

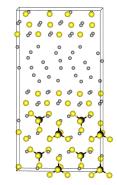
Relaxed Li_3PO_4 -Li interface

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

N. Lepley

Motivation


Overview Li₃PX₄

Materials Structure

Interfaces Vacuum

Interface with Li: Li₃PS₄

- Li₃PS₄ predicted not inherently stable relative to Li metal
- Experimental work agrees, formation of SEI likely
- SEI layer believed to be composed primarily Li₂S, some Li₃P
- Li₂S appears to be capable of stabilizing interface

Li₃PS₄+Li₂S Li interface

Summary

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Li₃PX₄: Bulk and Surface

N. Lepley

Motivation

Overview Li₃PX₄

Materials

Structure

Interface

Li Metal

Agrees with formation enthalpy expectation

Material	ΔH
Li_3PO_4 -Pmn 2_1	-21.41
Li_3PO_4 -Pmna	-21.38
Li_3PS_4 -Pmn 2_1	-8.36
Li_3PS_4 -Pmna(b)	-8.28
Li ₃ PS ₄ -Pmna(c)	-8.24
Li ₂ O	-6.18
Li ₂ S	-4.29

Conclusions

Motivation

Li₃PX₄: Bulk and Surface

N. Lepley

Overview Li₃PX₄

Materials

Structure

Energetics

Interfaces Vacuum

- Vacuum surface effects are not the dominant mechanism of Pmna phase stabilization
- Li₃PO₄ stable to Li
- $Li_3PS_4 + Li_2S$ stable to Li
- Further work is needed to understand the influence of interfaces on phase stability