

Li₁₄(PON₃)₂: Computational study of a possible new electrolyte for Li ion batteries

<u>Ahmad N.Al-Qawasmeh</u> and N. A. W. Holzwarth* Wake Forest University, Winston-Salem, NC, USA

*Research was supported by NSF DMR 1507942. Computations were performed on WFU's DEAC cluster.

APS March 2017

- Density functional theory with LDA approximation
- PAW formalism using datasets generated with **ATOMPAW** code (Holzwarth et al. CPC **135**, 329 (2001))http://pwpaw.wfu.edu
- Electronic structure calculations performed using **QUANTUM ESPRESSO**. (Giannozzi et al. JPCM **21**, 394402 (2009);http://www.quantum-espresso.org
- Plane wave expansion for wave functions with $|\mathbf{k}+\mathbf{G}|^2 \leq 64 \text{ Ry}$

Solid Electrolyte materials

Solid Electrolytes

(x=2y+3z-5)

(Du, PHYSICAL REVIEW B 81, 184106, 2010)

 $Li_{14}(PON_3)_2O_1$ Computational study of a possible new electrolyte for Li ion batteries

(Schnick, Eur. J. Inorg. Chem. 2015, 617-621)

(Schnick, Eur. J. Inorg. Chem. 2015, 617-621) (Schnick, J of solid state chemistry. 1990, 37,101) (Du, Phys Rev B 76, 174302)

3/14/2017

APS March 2017

6

Structure analysis

Electronic structure calculation

> The valence band states are characterized by the 2p states of O and N together with bonding combination of P 3s and 3p states, while the N 2p dominates the top of the valence bands of the $Li_{14}(PON_3)_2$.

The conduction band are characterized by the corresponding antibonding states

APS March 2017

Heat of decomposition calculation

Vacancies					
Multiplicity and Wyckoff Label	Relative Energy (eV)				
4g'	0.00				
4g	0.95				
2c	0.41				
Interstitials					
Fractional Coordinates	Relative Energy (eV)				
$I \equiv (1/3, 2/3, 0.73) \ (2d)$	0.00				
$II \equiv (0 \ , \ 0 \ , \ 0) \ (1a)$	0.22				

Formation Energy of 0.32 eV which involves the pair ($\mathbf{g'}$ -I).

APS March 201/

$Li_{14}(PON_3)_2$: Li ion migration analysis

Vacancy mechanism

$Li_{14}(PON_3)_2$: Li ion migration analysis

► Interstitial mechanism

Li₇PN₄: Li ion migration analysis

Li₇PN₄: Li ion migration analysis

Li ion migration summary

		Simulation			Experimental
Material	Mechanism	E _f (eV)	E _m (eV)	E _m +1/2 E _f (ev)	E _A (eV)
Li ₁₄ (PON ₃) ₂	Vacancy	0.3	0.3	0.4	
Li ₁₄ (PON ₃) ₂	Kick-out	0.3	0.6	0.7	
Li ₇ PN ₄	Vacancy	1.9	0.3	1.3	0.48
Li ₇ PN ₄ with O	Vacancy		0.5		0.48
Υ-Li ₃ PO ₄	Kick-out	1.7	0.3	1.2	1.1 – 1.2
β-Li ₃ PO ₄	Kick-out	2.1	0.4	1.5	

Li₁₄(PON₃)₂: Interface with Vacuum

		$\gamma = \frac{E_{total} - E_{bulk}}{24}$	
		2A	
		↑ b	
	-		0
plane	n_{f}	$\gamma (eV/A^2)$ (001) $\gamma = -$	<u> </u>
$(001)_N$	1	0.069	
$(001)_N$	2	0.069	ĂO
$(001)_N$	3	0.069	ΥŤ
$(001)_N$	4	0.069	
(001)0	3/2	0.41	
$(001)_O$	5/2	0.41 $(001)_0$	
$(001)_O$	7/2	0.41	
(010)	1	0.10	
(010)	2	0.10	$\bigcirc \bot$
(010)	3	0.10	
(010)	4	0.11 (001)	
(010)	5	0.11 $(\bigcirc $	
		a a	

Li₁₄(PON₃)₂: Interface with Li

Ideal interface

Strained interface

Interacting interface

$Li_{14}(PON_3)_2$: Interface with Li (Lepley, PHYSICAL REVIEW B 92, 214201 (2015))

Within any given periodic simulation cell with n_a units of material a and with n_b units of material b, we can define an interface energy:

In order approximately remove the effects of lattice strain: • Design the supercell to be commenserate with lattice *a* • Now the strain will scale with the amount of material *b*

$$\Rightarrow \tilde{\gamma}_{ab} \left(\tilde{\Omega}, n_a, n_b \right) = \tilde{\gamma}_{ab}^{\lim} \left(\tilde{\Omega} \right) + n_b \sigma$$

 $Li_{14}(PON_3)_2$: Interface with Li

Summary and Conclusions

For this work report a computational study of the structural and electrolyte properties of the $Li_{14}(PON_3)_2$ and Li_7PN_4 solid electrolyte materials .

The conduction process for these LiPON materials was dominated by the vacancy mechanism in comparison to the kick-out mechanism in the Li_3PO_4 .

 \blacktriangleright The calculated range of the activation energies for the Li₁₄(PON₃)₂ was found to be lower than Li₇PN₄ and Li₃PO₄ indicating relatively good conduction properties .

\blacktriangleright Both Li₁₄(PON₃)₂ and Li₇PN₄ have a stable interface with metallic Li.

3/14/2017

APS March 2017