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lonic conductivity from the mindset of atomistic modeling:

For particles, i each having charge ¢,, in a volume €,

. ] &
- the current density 1s  J(¢f) =— Z q.v.(t)
» dr (1)

ry o where v. (1) =
v, dt

>  Green-Kubo formula for evaluating
/ 10nIC conductivity

QO
G_Bk—T a’t(J(t) J(0))
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lonic conductivity from the mindset of atomistic modeling (continued):

Green-Kubo formula for evaluating 1onic conductivity

Q
o —%—T dt(J(t) J(0))

Performing time integral of current density to obtain polarization density:

configurations

4 1 N
P(0)=P(0) = [dr () ==, (r,() - x,(0))
0 i=l1
Alternative form of Green-Kubo 10nic conductivity:

Q)
G dm, <\P<rmax> PO)[’)

O =

configurations
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lonic conductivity from the mindset of atomistic modeling (further simplification):
In the previous formulation all ions are included in the evaluation however, in most
cases, 1t 1s reasonable to focus on the diffusing particles, i € D with g, = ¢q,,,
defining for eachie D Ar, (1) =r,(¢)—r.(2),

where r,. (¢) represents the center of charge of the "framework" or non-diffusing
part of the electrolyte at each time #. Making the assumption that the diffusing

particles move independently of each other, 1t 1s convenient to define a
"mean squared displacement": MSD(7) = Z ‘Arl. (1) —Ar, (O)‘z.
ieD

This leads to an approximate form of Green-Kubo 1onic conductivity:

2
3 dp 1
o =0 = Iim —(MSD(t
MSD tr 6QkBT tmax 500 tmaX < ( maX)>
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Some background to the Green-Kubo conductivity formulas
in its full formulation: o Q o L<\P(tmax)—P(O)\2>

6kBT tmaX_)oo t
and in its approximation: 7’ |

% e, T e 1 ;(MSDG))

configurations
max

configurations

1931 — Lars Onsager — Phys Rev 37, 405 (1931) & 38, 2265 (1931) —
“Reciprocal relations in irreversible processes” — Showed how macroscopic,
linearized hydrodynamic equation are affected by atomic level dynamics of
the system at equilibrium; also called the fluctuation-dissipation theorem.
1954 — M. S. Green — J. Chem. Phys. 22, 398 (1954)

1957 — R. Kubo - J. Phys. Soc. Jpn. 12, 570 (1957) — “Statistical-mechanical

theory of irreversible process”
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Some developments in classical molecular dynamics implementations

1964 — A. Rahman, Phys. Rev. 136, A405 (1964) — “Correlations in motion of
atoms in liquid argon” — 864 particles interacting with a truncated Lennard-
Jones pair potential at T=90K for ~ 4 ps. One of the first realistic molecular
dynamics simulations of transport and other properties.

1985 — Roberto Car and Michele Parrinello, Phys. Rev. Lett. 55, 2471 (1985)
“Unified approach for molecular dynamics and density functional theory” —
evolved into the practice of “first principles” molecular dynamics simulations.

1990 - Steve Plimpton of Sandla National Laboratory and collaborators

developed open source i1 & &5 software package for large scale classical
molecular dynamics 5|mulat|ons mainly using empirical interaction potentials.
Most recently LAMMPS has been adapted for use with several different

projects which use “machine learned” interactions.

2007 — Jorg Behler and Michele Parrinello, Phys. Rev. Lett. 98, 146401 (2007)
“Generalized neural-network representation of high-dimensional potential-
energy surfaces”
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Returning to discussion of the Green-Kubo formula and its success in
modeling real ionic conductors --

Full Green-Kubo formula:
O Numerically difficult

lim <‘P(tmax) P(())‘ > to evaluate

6k T tmax > t configurations

O =

Tracer approximate Green-Kubo formula:
) Numerically reasonable
dp 1

_ lim MSD(¢ | to evaluate
Gtr 6Q k Tt > t < S ( maX)>conﬁgu1rat10ns
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Some successful contributions -- One example
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High-throughput computational screening for
solid-state Li-ion conductorsf

Leonid Kahle, (2 * Aris Marcolongo ¥ # and Nicola Marzari ()

We present a computational screening of experimental structural repositories for fast Li-ion conductors,
with the goal of finding new candidate materials for application as solid-state electrolytes in next-
generation batteries. We start from ~ 1400 unigue Li-containing materials, of which ~900 are insulators
at the level of density-functional theory. For those, we calculate the diffusion coefficient in a highly
automated fashion, using extensive molecular dynamics simulations on a potential energy surface (the
recently published pinball model) fitted on first-principles forces. The ~130 most promising candidates
are studied with full first-principles molecular dynamics, including an estimate of the activation barrier
for the most diffusive structures. The results of the first-principles simulations of the candidate solid-
state electrolytes found are discussed in detail.
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Some past results from our own group - typically finding o, to overestimate
the experimental conductivity

Li,SnS, Li,OHCI Li,B;0,,Cl
4 . . J S e s B — | .
O Cale: LiSnS,"| | = 9L _ I B8 Cal: Li,B,0 CI
= & Cale: LiSnS, | | 8 2 '.;' . Calc ~ A Exp'; Li,B,O, Cl| -
g 00 Exp: Ref. (A) % "% CI = 2 o—e Lxp: Li,B,0,,Cl|_|
> 1 ® Exp: Ref. (B) |7 e 4 £ 7 Exp' Li.B.0, Cl| 1
M 0+ Exp: Ref. (C) \.._é' B 0 \ L e el
E‘“ -1 2 Exp.' % 2 —~— —
< -2+ ~ 9L . - ]
- ;_ z ® cubice—>ortho, = -4+ s
S 4l o ® . ‘ E 6 -
B 5 S4r . 1 % 8- —
= o o - -5 Cal: Li.B,0,, Cl
_g_ | = .s. '10_ — Exp"LiB0,, Cl
- _6 L | I | 1 | 1 | 1 | P - |
1 2 3 4 5 6 1 15 2 25 3 35 4 CBPLoo o
1000/T (K ) 0.5 1 1.5 2 2.5 3 3.5
Amad ALG e 1000/T (1000/K) 1000/T (1K)
mad Al-Qawasmeh, Jason Howard, _
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1, 075406 (2017)
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Some details of computational methods —

Thanks to the Born-Oppenheimer approximation, the positions of the atomic
nuclei can be treated with classical mechanics, while for each atomic
configuration, the electronic ground state energies and forces are determined
from density functional theory using the projector augmented wave formalism
(PAW) of Blochl (1994) bor: 10.1103/physreve.50.17953 and the PBESOL exchange-
correlation functional of Perdew (2008) po: 10.1103/PhysRevLett.100.136406 Density
functional calculations were performed with the open source Quantum

Espresso package. :
P P d f /) URNTUMESPRESSD

Typical first principles molecular dynamics runs represent simulation
times of ~ 100 ps or less.
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What could be the problem?

Li,B,0,,Cl

Simulations performed at
High T to increase the number
of events; extrapolation to
experimental temperatures
may be inaccurate.

What could be a solution?

Possibly jump on the machine
learning band wagon?

6/6/2025
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Yan Li, Z. D. Hood, and N. A. W.
Holzwarth, PRM 6, 025401 (2022)

BATTCAVE 2025

11



Evidence of the machine learning band wagon --
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Article https://doi.org/10.1038/s41467-023-36329-y

Learning local equivariant representations
for large-scale atomistic dynamics

Albert Musaelian®®, Simon Batzner ® 2/, Anders Johansson®, Lixin Sun’,
Cameron J. Owen ®", Mordechai Kornbluth ® 2 & Boris Kozinsky ® 2
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High-performance training and inference for deep equivariant interatomic potentials

Chuin Wei Tan,!-* Marc L. Descoteaux,!-* Mit Kotak,2 Gabriel de Miranda Nascimento,?
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Input data
for MD runs
at several T'’s

-

f (/) LURNTUMESPRESSD

8-

Prepare
training and
validation
data set with

{ri},E,{F:}

<

Translate fitted
model for LAMMPS
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Model system — solid electrolyte composed of lithium phosphate and silicate
alloys — specifically (Li;PO,), 75(Li;Si0,4), ,5 as inspired by --

JAC'S

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Structural and Mechanistic Insights into Fast Lithium-lon Conduction

in Li,SiO,—Li;PO, Solid Electrolytes

Yue Deng,mt Christopher Eames,* Jean-Noél Chotard,” Fabien Lalére,” Vincent Seznec,’ Steffen Emge,§

Oliver Pecher,® Clare P. Grey,§ Christian M:.-lsque]jen.]E and M. Saiful Islam**
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ABSTRACT: Solid electrolytes that are chemically stable and
have a high ionic conductivity would dramatically enhance the
safety and operating lifespan of rechargeable lithium batteries.
Here, we apply a multi-technique approach to the Li-ion
conducting system (1—z)Li,SiO4—(z)Li;PO, with the aim of
developing a solid electrolyte with enhanced ionic con-
ductivity. Previously unidentified superstructure and immisci-
bility features in high-purity samples are characterized by X-ray
and neutron diffraction across a range of compositions (z =
0.0—1.0). Ionic conductivities from AC impedance measure-
ments and large-scale molecular dynamics (MD) simulations
are in good agreement, showing very low values in the parent

pubs.acs.org/JACS

DOl 10.1021//jacs.5b04444
J. Am. Chem. Soc. 2015, 137, 91369145

phases (Li,SiO4 and Li;PO,) but orders of magnitude higher conductivities (10~ S/cm at 573 K) in the mixed compositions.
The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs
through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic
conductivity. Solid-state °Li, "Li, and *'P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the
solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to
optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.
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Structure 2

Structure 1
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Visualization of Li ion migration during 44 time intervals of 0.3 ps

Structure 1 Structure 2
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Preliminary results for calculating mean squared displacements of Li 10ns:

MSD(t) = > |Ar,(¢) - Ar,(0)|

ieD 3

Allegro-LAMMPS
with various
configuration
averages

™
w

Quantum
Espresso

<MSD(t)>config (angz)

2 4 6 8 10 12 14 16 18 20

t (ps)
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Preliminary evaluations

dAllegro-Lammps MSD results seem reasonable and
not very sensitive to choices of “hyperparameters”

1 Green-Kubo analysis of long MD runs needs more
work
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Evidence of numerical issues —
Plot of a particular Li position as a function of time for two identical
LAMMPS runs with different hardware
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From “Understanding Molecular Simulation” by Frenkel and Smit:

“The Lyapunov instability might seem to deal a devastating blow to the very idea
of Molecular Dynamics simulations. However, we have good reason to assume
that the situation is, as the saying goes, desperate but not serious.” ... “In short,
our trust in Molecular Dynamics simulation as a tool to generate good
approximations to real trajectories of a many-body system is based largely on
belief... [T]here is clearly a skeleton in the closet. We believe this skeleton will
not haunt us, and we quickly close the closet.”

For calculating ionic conductivity, it is important to calculate averages over
trajectories and Frenkel and Smit (and many others) suggest that
1. The approximate trajectories from MD simulations are reasonable
2. The “skeleton” helps insert more ‘diversity’ into the sampling
3. Need to improve configuration averaging methods.
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Outlook

1 Using the allegro machine learning software package together
with first principles molecular dynamics looks very promising for
performing realistic simulations of materials in large supercells
and/or for long times.

1 This study helped us experience the Lyapunov instability which
provides an interesting challenge for future work.
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Thanks for your attention.
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