

First principles simulations of idealized known and unknown crystalline materials

Natalie Holzwarth, Department of Physics WFU

Reported work supported by NSF Grant DMR-1507942 and earlier NSF grants. Collaborators for reported work include Yan Li (WFU), William C. Kerr (WFU), Zachary D. Hood (soon to be at ANL), Keerthi Senevirathne (now at FAMU), Cynthia S. Day (WFU), Michael D. Gross (WFU), Abdessadek Lachgar (WFU), Yaojun Du (now in China)

Main question: What is the most productive way for computational/theoretical scientists to collaborate with their experimental colleagues?

Argument for "first principles" perspective: Control of physical and numerical accuracy extended by extrapolation to properties measured at the macroscopic scale

Example studies: Li₂PO₂N; Li₄P₂S₆ and Na₄P₂S₆

Main question: What is the most productive way for www.computational/theoretical scientists to collaborate with their experimental colleagues?

- Human factors; interdisciplinary conflicts and misinterpretations of terminologies
- State of the art of computational and experimental methods
 - What is accurately calculated is not necessarily accurately measurable.
 - What is accurately measured is not necessarily accurately calculatable.

Perspectives on Materials Simulations

useful results

It is important to know what is inside the box!

Born-Oppenheimer approximation [*Born & Huang, Dynamical Theory of Crystal Lattices , Oxford (1954)*]: Nuclear motions treated classically while electronic motions treated quantum mechanically because $M_N >> m_e$

Density functional theory [*Kohn, Hohenberg, Sham, PR 136, B864* (1964), *PR 140, A1133 (1965)*]: Many electron system approximated by single particle approximation using a self-consistent mean field.

Frozen core approximation[*von Barth, Gelatt, PRB 21, 2222* (1980)]: Core electrons assumed to be "frozen" at their atomic values; valence electrons evaluated variationally.

Classical or harmonic phonon approximation for nuclear motion

Example studies:

Research on battery materials Materials components of a Li or Na ion battery

Role of the electrolyte is to allow for the transport of Li+ or Na+ ions, excluding electrons from inside the battery and forcing them through the external circuit.

> The case for all solid state batteries

Development of the LiPON thin film

Solid State Ionics 53-56 (1992) 655-661 North-Holland

Sputtering of lithium compounds for preparation of electrolyte thin films

N.J. Dudney, J.B. Bates, R.A. Zuhr and C.F. Luck Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6030, USA

and

J.D. Robertson Department of Chemistry, University of Kentucky, 800 Rose St. Lexington, KY 40506-0055, USA

SOLID STATE

Example studies: (continued) Validation of the LiPON thin film

Malerials Views-

_____ Adv. Energy Mater. 2015, 5, 1401408 _____

www.advenergymat.de

www.MaterialsViews.com DOI: 10.1002/aenm.201401408

Solid Electrolyte: the Key for High-Voltage Lithium Batteries

Juchuan Li,* Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J. Dudney*

Advantages

- Compatible and stable with high voltage cathodes
- Compatible and stable with Li metal anodes

Disadvantages

- Relatively low ionic conductivity (Compensated with the use of less electrolyte material?)
- Lower total capacity compared with liquid electrolytes

Demonstrated for LiNi_{0.5}Mn_{1.5}O₄/LiPON/Li

- > 10⁻⁶ m LiPON electrolyte layer achieved adequate conductivity
- > 10,000 cycles* with 90% capacity retention

*1 cycle per day for 27 years

Systematic study of LiPON materials – Li_xPO_yN_z – (Yaojun A. Du and N. A. W. Holzwarth, Phys. Rev. B 81, 184106 (2010))

11

Computationally predicted structure s₁-Li₂PO₂N

Fig. 7. Ball and stick diagrams for LiPO₃ in the P2/c structure (20 formula units per unit cell) and s1-Li₂PO₂N in the *Pbcm* structure (4 formula units per unit cell) from the calculated results. For each crystal diagram, a view of a horizontal chain axis is also provided for a single phosphate or phospho-nitride chain.

Computationally predicted structure

Experimentally realized structure

SD-Li₂PO₂N s_1 -Li₂PO₂N Key 🔍 Li **N** 0 🔵 Р OS Pbcm $Cmc2_1$

(2013)

product

Method: High temperature solid state synthesis based on reaction Synthesis of Li₂PO₂N by $Li_2O + \frac{1}{5}P_2O_5 + \frac{1}{5}P_3N_5 \rightarrow Li_2PO_2N$ Keerthi Senevirathne, Structure from X-ray refinement: Cmc2₁ Li N Cynthia Day, Michael Gross, and Abdessadek Lachgar *Solid State Ionics* **233**, 95-101 Was this a success? Not a good ionic conductor; not a good model for glassy LiPON Li ion Paper cited 59 times Found in some LiPON $_{\rm PO_2N}$ ion processing as a stable by-Center for Functional Materials

- Experimental story Li₄P₂S₆ and Na₄P₂S₆ as examples of interesting electrolyte systems
 - $Li_4P_2S_6$ has been identified as a low conductivity decomposition product in the formation of lithium thiophosphate electrolytes.

Journal of the Ceramic Society of Japan 118 [4] 305-308 2010

Paper

Preparation and characterization of superionic conducting Li₇P₃S₁₁ crystal from glassy liquids

Keiichi MINAMI, Akitoshi HAYASHI and Masahiro TATSUMISAGO[†]

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599–8531

12/4/2019

Minami et al. 2010, continued

Fig. 2. Temperature dependence of conductivities for the crystallized samples prepared from the glass by heat treatment at various temperatures and holding periods of time.

Fig. 1. XRD patterns of the glass and crystallized samples prepared from the glass by heat treatment at various temperatures and holding periods of time.

WAKE FOREST

UNIVERSITY

Previously determined structure of Li₄P₂S₆

JOURNAL OF SOLID STATE CHEMISTRY 43, 151-162 (1982)

Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li₄P₂S₆

R. MERCIER, J. P. MALUGANI, B. FAHYS, J. DOUGLADE,* ET G. ROBERT

Laboratoire d'Electrochimie des Solides, ERA 810, et *Laboratoire de Chimie Physique, Université de Franche-Comté, 25030 Besancon Cedex, France

Structure analyzed as a disordered hexagonal structure with space group $P6_3/mcm$ (#193)

Center for Functional Materials

Solid State Ionics 284 (2016) 61-70

Contents lists available at ScienceDirect

Solid State Ionics

journal homepage: www.elsevier.com/locate/ssi

Structural and electrolyte properties of Li₄P₂S₆

Zachary D. Hood ^{a,1}, Cameron Kates ^{b,2}, Melanie Kirkham ^c, Shiba Adhikari ^d, Chengdu Liang ^{a,3}, N.A.W. Holzwarth ^{b,*}

^a Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

^b Department of Physics, Wake Forest University, Winston-Salem, NC 27109-7507, USA

^d Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109-7486, USA

SOLID STATE IONIC

^c Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

or

Mercier's disordered structure can be described in terms of the alternative stacking patterns of the building blocks:

Example studies: (continued) Possible stacking structures

100% P↑ Space group *P*31m

Energetically less favored according to simulations

50% P↑ 50% P↓

Consistent with Mercier's analysis; energetically favored; not sensitive to detailed stacking according to simulations

Center for Functional Materials

Example studies: (continued)

Dalton Transactions

View Article Online View Journal | View Issue

Cite this: Dalton Trans., 2018, 47, 11691

Check for updates

PAPER

Refinement of the crystal structure of Li₄P₂S₆ using NMR crystallography⁺

Sven Neuberger, ^(D)^a Sean P. Culver,^b Hellmut Eckert, ^(D)^{c,d} Wolfgang G. Zeier ^(D)^b and Jörn Schmedt auf der Günne ^(D)*^a

Prepare more highly crystalline samples; combine NMR and X-ray analysis to show that there are two inequivalent P sites

12/4/2019

DOI: 10.1002/zaac.201300575

Synthesis and Structural Characterization of the Alkali Thiophosphates Na₂P₂S₆, Na₄P₂S₆, K₄P₂S₆, and Rb₄P₂S₆

Alexander Kuhn,^[a] Roland Eger,^[a] Jürgen Nuss,^[a] and Bettina V. Lotsch^{*[a,b]}

Na₄P₂S₆ found to crystallize in a base centered monoclinic structure with space group *C2/m* (#12); result verified by Zachary Hood and colleagues who also found the material to have appreciable Na ion conductivity.

Primitive cell of the Kuhn structure

Space group C2/m

Can the observed structural stability patterns be understood from first principles?

Stability approximated in terms of the Helmholtz free energy

as a function of temperature T:

 $F(T) = F_{SL}(T) + F_{vib}(T) \approx U_{SL} + F_{vib}(T)$ **Static** Harmonic Internal lattice phonon energy approx approx from DFT $F_{vib}(T) = k_B T \int_{0}^{\infty} d\omega \ln \left(2 \sinh \left(\frac{\hbar \omega}{2k_B T} \right) \right) g(\omega)$ Phonon DOS computed 12/4/2019 Center for Functional Materials

from **DFPT**

Phonon dispersion curves prepared by Yan Li

¹Suggested path: Hinuma et al., *Comp. Mat. Sci.* **128**, 140-184 (2017) ²Li et al., *J. Phys. Condens. Matter*, **32**, 055402 (2020)

Discontinuous branches at
$$\Gamma$$
: coupling between photon and photon²
Center for Functional Materials

Helmholtz free energy analysis by Yan Li

Helmholtz free energy: $F = U_{SL} + F_{vib}$

¹Kuhn et al., *Z. Anorg. Allg. Chem.* **640**, 689-692 (2014) ²Hood et al., *J. Solid State Ionics* **284**, 61 (2016) ³Neuberger et al., *Dalton Trans*. **47**, 11691-11695 (2018)

Summary of simulation energies

Na ₄ P ₂ S ₆	⊿U _{sL} (eV)	<i>F_{vib}(300K)</i> (eV)	<i>F(300K)</i> (eV)
Neuberger structure (P3m1)	0.00	-0.04	-0.04
Kuhn structure (<i>C2/m</i>)	0.00	-0.08	-0.08
Simple hex structure (P31m)	0.09	-0.04	0.05
Li ₄ P ₂ S ₆	<i>∆U_{sL}</i> (eV)	<i>F_{vib}(300K)</i> (eV)	<i>F(300K)</i> (eV)
Neuberger structure (P3m1)	0.00	0.19	0.19
Kuhn structure (<i>C2/m</i>)	0.31	0.12	0.43
Simple hex structure (P31m)	0.04	0.20	0.24

Energies given in units of eV/formula unit with zero set at the static lattice energy for the Neuberger structure.

Some details of the vibrational stabilization

Vibrational Helmholtz free energy expression:

$$F_{vib}(T) = k_B T \int_0^\infty d\omega \ln\left(2\sinh\left(\frac{\hbar\omega}{2k_B T}\right)\right) g(\omega)$$

In practice, it is convenient to express frequencies in wavenumbers:

$$\tilde{\omega} = \frac{\omega}{2\pi c} \text{ (cm}^{-1}\text{) with } F_{vib}(T) = \int_{0}^{\infty} d\tilde{\omega} f_{vib}(\tilde{\omega}, T)$$

where the weighted phonon DOS factor is

$$f_{vib}(\tilde{\omega},T) \equiv k_B T \ln\left(2\sinh\left(\frac{hc\tilde{\omega}}{2k_B T}\right)\right) g(\tilde{\omega})$$
Center for Functional Materials

Outlook –

From the perspective of computational/theoretical scientist, it is highly desirable to collaborate with experimental colleagues

Short list --

What can be well modeled/calculated from "first principles" –

 Ordered crystalline materials, electronically insulating in their structural ground state

 Computed heats of formation and reactions among the crystalline materials in their ground states **Corresponding real materials and their experimental measurements –**

- Stoichiometrically well-defined materials; not necessarily single crystals but with significant bulk/surface ratios.
- Calorimetry measurements of heats of formation and reactions among the crystalline materials referenced to STP

Outlook –

From the perspective of computational/theoretical scientist, it is highly desirable to collaborate with experimental colleagues

Extensions beyond simple first principles calculations

- > Metallic materials; > may need to consider electronic correlation effects
- Isolated defects in crystalline materials; Isolated defects in crystalline materials;
- Crystalline materials with partial disorder; need to develop sampling techniques in order to average over likely configurations of sample
- Materials in electronically excited states; additional levels of theory/computation
- Many others ---