WFU PHYSICS COLLOQUIUM ON

First Principles Investigations of Electrolyte Materials in All-Solid-State Batteries

Yan Li

Department of Physics, Wake Forest University

Thursday, November 4, 2021

WAKE FOREST UNIVERSITY

□ Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021)

$$Li_{4+x}B_7O_{12+x/2}Cl$$
 (x = 0, 1) and related

$$Li_{7.5}B_{10}S_{18}X_{1.5}$$
 (X = Cl, Br, I)

□ Research background: General motivation and theoretical tools

□ Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021) $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

$$Li_{7.5}B_{10}S_{18}X_{1.5}$$
 (X = Cl, Br, I)

Motivation of studying battery materials

□ Nobel prize recognition

"The Lithium ion batteries have laid the foundation of a wireless, fossil fuel-free society and are of the greatest benefit to humankind" (words of the Nobel committee)

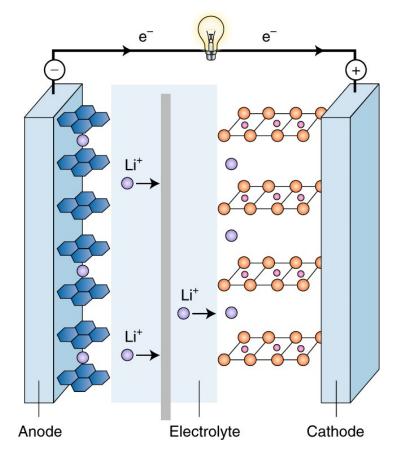
Continuous challenges

- More demanding applications
- New materials and recipes for battery components
- Balance of capacity, cost, size, and weight

The Nobel Prize in Chemistry 2019

rewards the development of lithium ion battery

John B. Goodenough M. Stanley Whittingham


Akira Yoshino

Whittingham: developed the first functional lithium battery in the early 1970s Goodenough: doubled the battery's potential in the following decade Yoshino: eliminated pure lithium from the battery, making it much safer to use

Photo from https://www.nobelprize.org

Components of a rechargeable Li ion battery

Discharge mode

Role of the electrolyte:

Allow for the transport of Li ions, excluding electrons from the battery and forcing them through the external circuit.

Why solid-state electrolyte?

- Superior safety due to the absence of flammable liquid content
- Excellent physical and chemical stability
- Compatible and stable with Li metal anodes
- Acceptable ionic conductivity

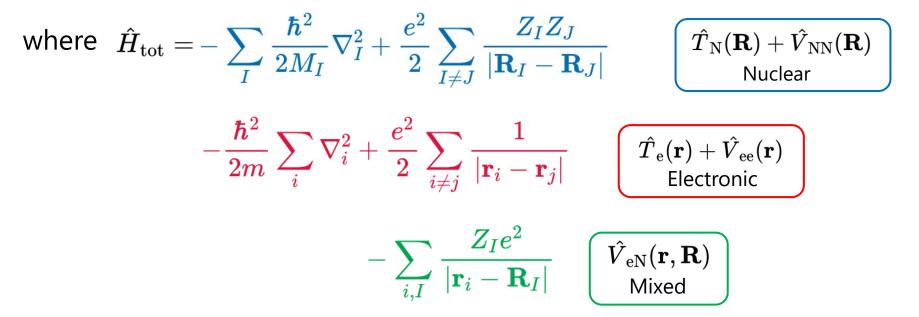
Figure used with permission from J.B. Goodenough. Nat Electron 1, 204 (2018). Copyright @ 2018 Springer Nature

WAKE FOREST How can computer modeling help?

For known and theoretically predicted Li or Na ion solid electrolyte materials (electronically insulating & operate in ground electronic states)

Structures and stabilities

- Construct models for various forms of ideal crystals
- Simulate the static and vibrational properties
- Identify stable and metastable configurations


□ Electrolyte properties

- Mechanisms: vacancy migration, interstitial migration
- Quantitative analysis: defect formation energy, migration energy barrier, ionic conductivity
- Model ideal electrolyte interfaces with anodes

Many-body Schrödinger equation

Exact time-independent Schrödinger equation for a system of N electrons with coordinates $\{r_i\}$ $(i = 1, 2, \dots, N)$ and M nuclei with coordinates $\{R_I\}$ $(I = 1, 2, \dots, M)$

$$irac{\partial}{\partial t}\Psi(\{\mathbf{r}_i\},\{\mathbf{R}_I\})=\hat{H}_{ ext{tot}}\ \Psi(\{\mathbf{r}_i\},\{\mathbf{R}_I\})$$

First principles methods: a series of well-established physical approximations

WAKE FOREST

Born-Oppenheimer approximation

Born-Oppenheimer approximation ($M_I \gg m$)

$$\Psi(\{\mathbf{r}_i\}, \{\mathbf{R}_I\}) = \Psi_{\mathbf{R}}(\{\mathbf{r}_i\})\chi(\{\mathbf{R}_I\})$$
Electron part: treated quantum mechanically

Electronic Schrödinger equation:

$$\hat{H}_{\mathbf{R}} \Psi_{\mathbf{R}}(\{\mathbf{r}_i\}) = E_{\mathbf{R}} \Psi_{\mathbf{R}}(\{\mathbf{r}_i\})$$
 $\hat{H}_{\mathbf{R}} = -rac{\hbar^2}{2m} \sum_i
abla_i^2 - \sum_{i,I} rac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + rac{e^2}{2} \sum_{i
eq j} rac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$

WAKE FOREST

Density functional theory and numerical schemes

Hohenberg-Kohn theorem:

$$E_{\mathbf{R}} = F[
ho(\mathbf{r})]$$
 Reduction of dimensionality (3N $ightarrow$ 3)!

Kohn-Sham equations:

$$E_{\mathbf{R}} = F[\rho(\mathbf{r})] = E_{\mathbf{T}} + E_{\text{ext}} + E_{\mathbf{H}} + E_{\text{xc}}$$
unknown
$$\frac{\delta F[\rho]}{\delta \rho}\Big|_{\rho_{0}} = 0 \quad \text{obtained from independent}$$
electrons approximation
Hohenberg and Kohn, *Phys. Rev.* **136**, B864 (1964)
Kohn and Sham, *Phys. Rev.* **140**, A1133 (1965)
$$\left[-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{\text{ext}}(\mathbf{r}) + V_{\text{H}}(\mathbf{r}) + V_{xc}(\mathbf{r})\right]\psi_{i}(\mathbf{r}) = \varepsilon_{i}\psi_{i}(\mathbf{r})$$

$$V_{\text{ext}}(\mathbf{r}) = -\sum_{I}\frac{Z_{I}e^{2}}{|\mathbf{r}-\mathbf{R}_{I}|} \quad \nabla^{2}V_{\text{H}}(\mathbf{r}) = -4\pi e^{2}\rho(\mathbf{r}) \quad V_{\text{xc}}(\mathbf{r}) = \frac{\delta E_{\text{xc}}[\rho]}{\delta\rho}\Big|_{\rho(\mathbf{r})}$$

$$\rho(\mathbf{r}) = \sum_{i}|\psi_{i}(\mathbf{r})|^{2} \quad \text{LDA: Perdew and Wang, Phys. Rev. B 45, 13244 (1992) \\ \text{GGA: Perdew et al., Phys. Rev. L 77, 3865 (1996)}$$

To solve DFT equations: Planewave representations; Pseudopotential formulations

Output of DFT calculations

At equilibrium:

$$\mathbf{F}_I \!= -rac{\partial U(\{\mathbf{R}_I\})}{\partial \mathbf{R}_I} = 0$$

- Optimized structural parameters
- Static lattice energy: $U_{SL} = \min U(\{R_I\})$
- Kohn-Sham orbitals and energies
- Interstitial-vacancy pair formation energy: $E_{
 m f} = U_{
 m SL}^{
 m defect} U_{
 m SL}^{
 m perfect}$
- Ionic migration energies: $E_{\rm m}$

Lattice vibrations in crystalline solids

Near equilibrium (Harmonic approximation):

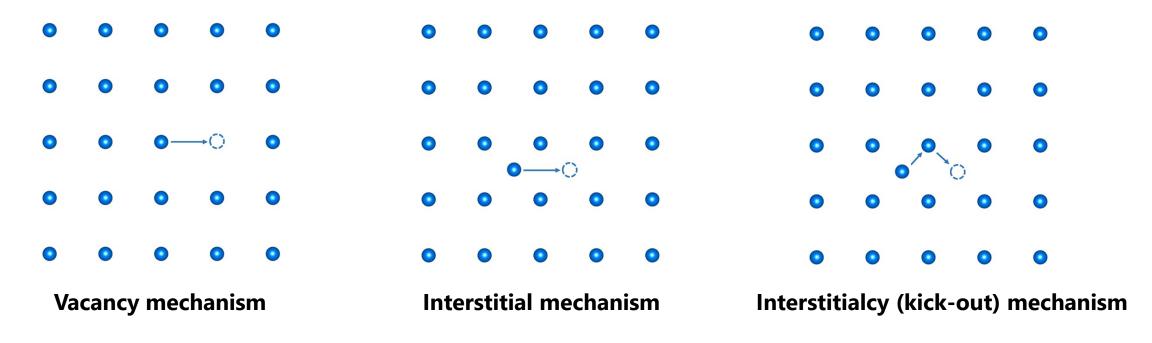
WAKE FOREST

$$U(\{\mathbf{u}_{s}(l)\})_{harm} = U(\{\mathbf{u}_{s}(l)\} = 0) + \frac{1}{2} \sum_{ls\alpha} \sum_{mt\beta} C_{st}^{\alpha\beta}(l,m) u_{s\alpha}(l) u_{t\beta}(m) \quad \text{where} \quad C_{st}^{\alpha\beta}(l,m) = \frac{\partial^{2}U}{\partial u_{s}^{\alpha}(l)\partial u_{t}^{\beta}(m)} \bigg|_{0}$$

$$M_s(\omega^
u)^2 u^
u_{slpha}({f q}) = \sum_{teta} ilde{C}^{lphaeta}_{st}({f q}) u^
u_{teta}({f q})$$

First principles phonon calculations: Density functional perturbation theory (DFPT)

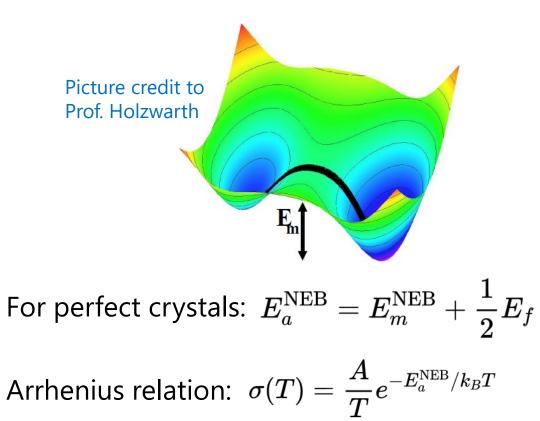
- Phonon frequencies and eigenvectors at any wavevector
- Phonon dispersions: $\omega^{
 u} \sim {f q}$ (by specifing a path of high symmetry points)
- Phonon density of states (PDOS): $g(\omega) = \frac{V}{(2\pi)^3} \int d^3q \sum_{\nu=1}^{3N} \delta(\omega \omega^{\nu}(\mathbf{q}))$
- Thermodynamic properties such as the vibrational energy: $F_{vib}(T) = k_B T \int_0^\infty d\omega \ln\left(2\sinh\left(\frac{\hbar\omega}{2k_B T}\right)\right) g(\omega)$


Combined the DFT and DPFT energies

• The Helmholtz free energy: $F(T) = F_{SL}(T) + F_{vib}(T) \approx U_{SL} + F_{vib}(T)$

Ordered system with constant volume

Li/Na ions diffusion mechanisms


High ionic diffusivity in solid conductors requires:

- Rigid framework and high concentration of mobile ions
- Sufficient number of available sites for the mobile ions to occupy
- Continuous channels with low migration barrier energies

Nudged Elastic Band (NEB)

Requires a specific migration pathway as input Simple but limited

Ab Initio Molecular Dynamics (AIMD)

Statistical averaging over all diffusional events Large supercell & long simulation time

$$egin{aligned} \mathrm{MSD}(t,T) &\equiv rac{1}{N_\mathrm{a}} igg< \sum_{i=1}^{N_\mathrm{a}} |\mathbf{R}_i(t) - \mathbf{R}_i(0)|^2 igg
angle \ D_{tr}(T) &= rac{1}{6} \lim_{t o \infty} rac{1}{(t-t_{eq})} \mathrm{MSD}(t-t_{eq},T) \ D_{\mathrm{tr}}(T) &= D_0 e^{-E_a^{\mathrm{MD}}/k_B T} \end{aligned}$$

Nernst-Einstein relation:

$$\sigma(T) = rac{N}{V} rac{q^2}{k_B T} D_{ ext{all}} = rac{1}{H_r} rac{N}{V} rac{q^2}{k_B T} D_{ ext{tr}}$$

Haven ratio: $H_r = D_{\rm tr}/D_{\rm all}$

measures effects of correlated motions

Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT) with the modified Perdew-Burke-Ernzerhof generalized gradient approximation (PBEsol GGA)

Perdew et al., PRL 100, 136406 (2008)

- The projector augmented wave (PAW) formalism with atomic datasets generated by ATOMPAW code available at <u>http://pwpaw.wfu.edu</u>
- □ First principles electronic-structure calculations and materials modeling

□ Structural visualization, symmetry identification, X-ray patterns

http://www.xcrysden.org/

FINDSYM Version 7.1.2, June 2021

https://stokes.byu.edu/iso/findsym.php

https://www.ccdc.cam.ac.uk/solution s/csd-core/components/mercury/

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020) Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021)

$$Li_{4+x}B_7O_{12+x/2}CI$$
 (x = 0, 1) and related

$$Li_{7.5}B_{10}S_{18}X_{1.5}$$
 (X = Cl, Br, I)

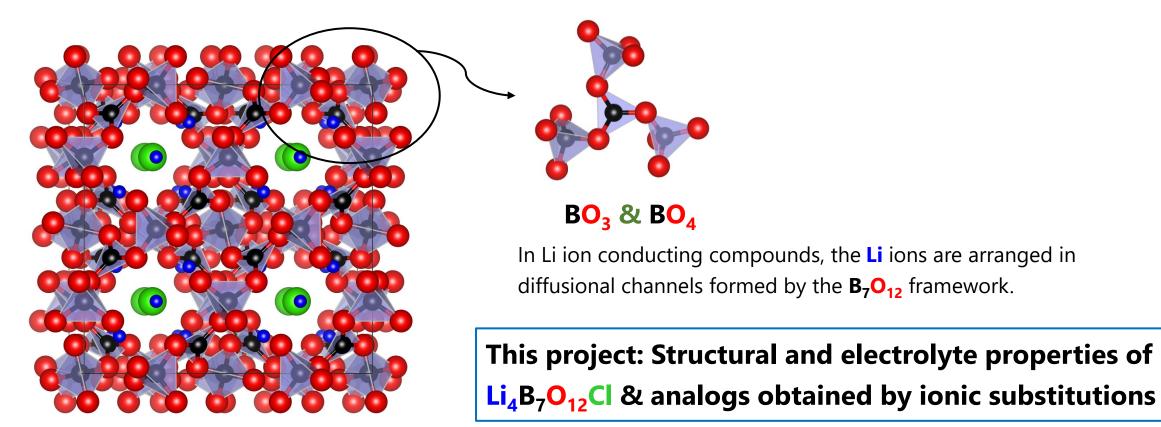
Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020) Phonon dispersion

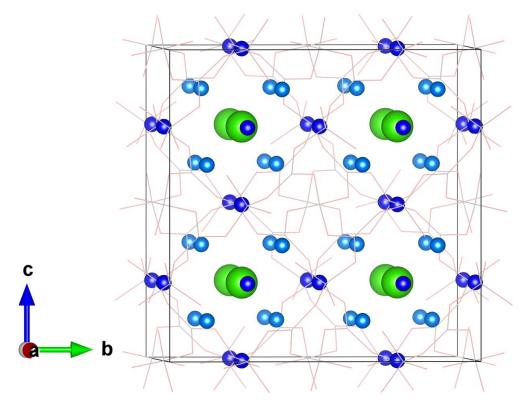
Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)


Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021)

$$Li_{4+x}B_7O_{12+x/2}CI$$
 (x = 0, 1) and related

$$Li_{7.5}B_{10}S_{18}X_{1.5}$$
 (X = Cl, Br, I)


Mineral boracites $M_3B_7O_{13}X$, where M = Mg, Cr, Mn, Fe, Co, Ni, Zn or Cd, and X = Cl, Br or I Li-containing boracites $Li_{4+x}B_7O_{12+x/2}X$, where $0 \le x \le 1$, and X = Cl, Br or I

11/04/2021

Reported structures of Li₄B₇O₁₂Cl from 1977*

Ideal cubic model 8 formula units/cell

Three disordered phases

*Jeitschko et al., Acta Cryst. B33, 2767-2775 (1977)

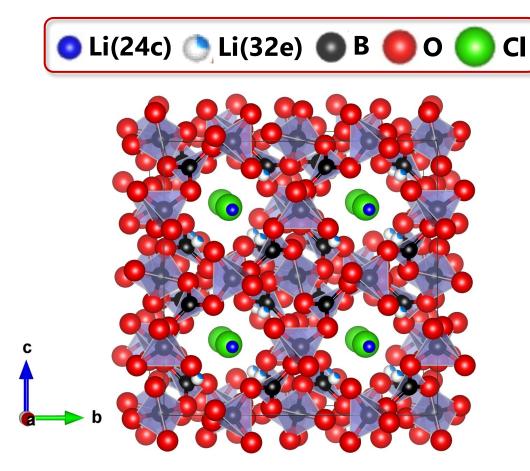
Above 348 K	γ phase (F $\overline{4}$ 3c, No. 219)		
	Li(24c): 93.7% occupied		
	Li(32e): 31.6% occupied		

310 – 348 K β phase (P43c, No. 218)

 Ideal F43c model
 Li(24c): 96.7% occupied

 Li(32e): 27.8% occupied

 Room T
 α phase (Exp. R3, No. 146)

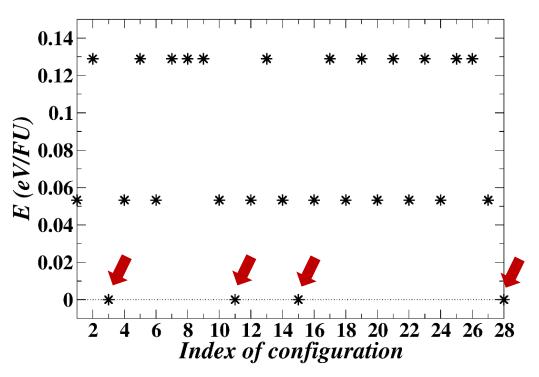

 Ideal F43c model
 Li(24c): 100% occupied

 Li(32e): 25% occupied
 Li(32e): 25% occupied

* The real space groups of the α and β phases are subgroups of F43c.

** The atomic positions for both α and β phases are not known in experiment.

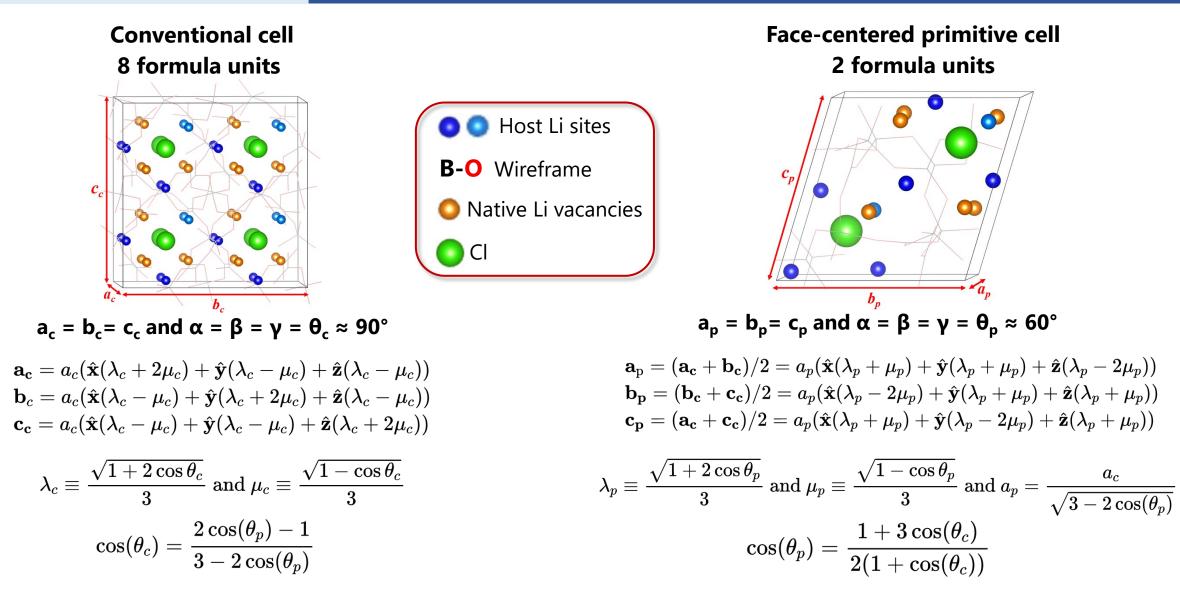
Find the ground state structure for α -Li₄B₇O₁₂Cl



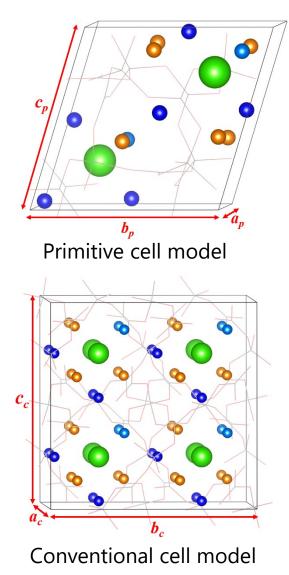
VAKE FOREST

UNIVERSITY

Conventional cell of F43c model


Li(24c): 100% occupied Li(32e): 25% occupied Perform geometry optimizations for 28 (C_8^2) unique configurations in the primitive cell setting

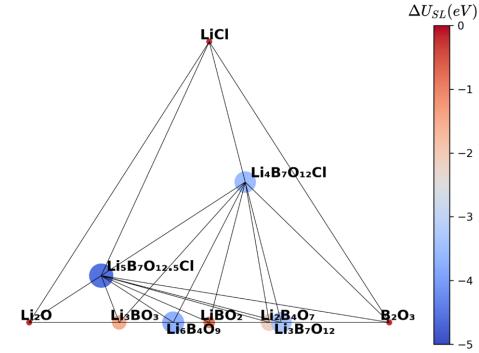
The calculation finds four identical lowest-energy configurations with the **rhombohedral R3c (No. 161)** symmetry



α -Li₄B₇O₁₂Cl in rhombohedral R3c structure

α-Li₄B₇O₁₂Cl in rhombohedral R3c structure

Lattice parameters and Li ion fractional coordinates for the R3c structure of α -Li₄B₇O₁₂Cl, comparing calculated results with the experimental measurements.

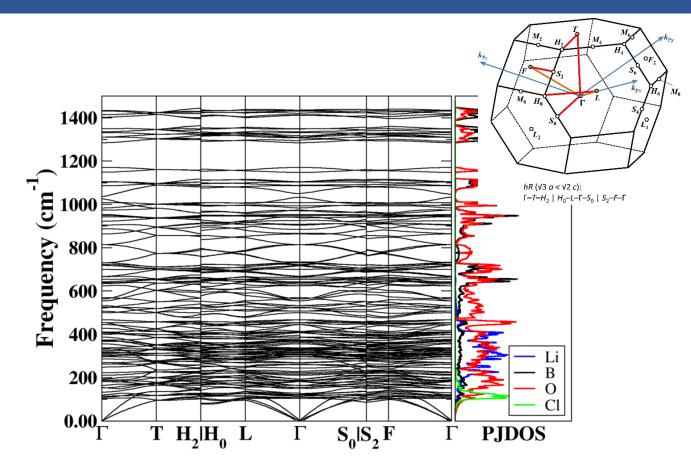

Li ₄ B ₇ O ₁₂ Cl	$\mathbf{a} = \mathbf{b} = \mathbf{c} (\mathbf{A})$	$\alpha = \beta = \gamma$ (deg)
Cal. R3c	12.137	90.108
Exp.* R3	12.141	90.084
Exp.* F43c model	12.141	90.000

Cal. R3c			Exp. F43c model				
Atom	Wyck	f(x, y, z) (conv.)	Occ.	Atom	Wyck	f (x , y , z)	Occ.
Li(1)	4x6 b	(0.030, 0.245, 0.245)	1.00	Li(1)	24 c	(0.000, 0.250, 0.250)	1.00
Li(2)	4x2 a	(0.865, 0.865, 0.865)	1.00	I :(2)	32 e	(0.871, 0.871, 0.871)	0.25
Vac. Li	4x6 b	(0.633, 0.635, 0.873)	0.00	Li(2)			

*Experimental data taken from Jeitschko et al., Acta Cryst. B. 33, 2767-2775 (1977)

11/04/2021

Phase stability of α -Li₄B₇O₁₂Cl

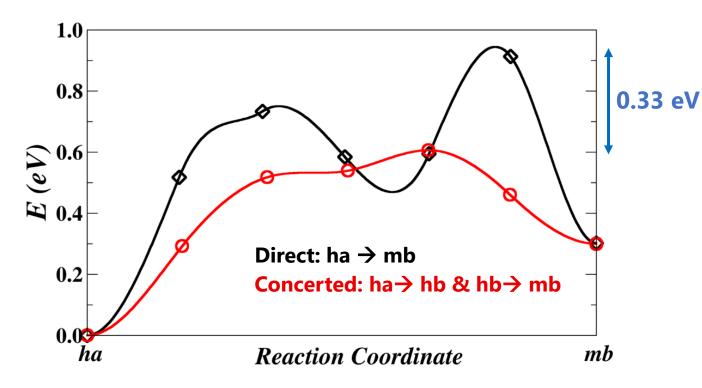


NAKE FOREST

UNIVERSITY

Li₂O-B₂O₃-LiCl phase diagram at 0 K and 0 atm

Reaction energy: $\Delta U_{SL} = U_{SL} - \sum x_i U_{SL}^i$ Where U_{SL} is the total static energy per formula unit of a specific compound. x_i with $i = \text{Li}_2\text{O}$, B_2O_3 , and LiCl represents the compositional ratio of each reference phase for which the total static energy per formula unit is denoted by U_{SL}^i .


Phonon dispersion curves and projected density states of $Li_4B_7O_{12}CI$ with frequencies ranging from 0 ~ 1440 cm⁻¹.

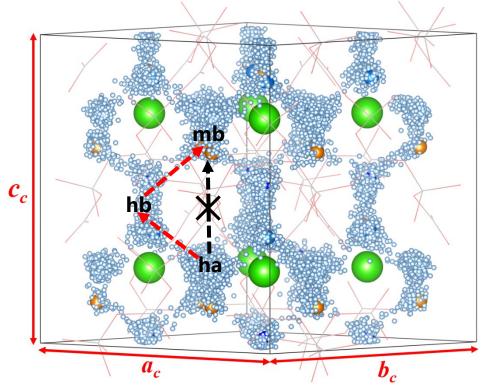
Brillouin zone diagram: Hinuma et al., *Comp. Mat. Sci.* **128**, 140-184 (2017). Note that the rhombohedral lattice is described by an equivalent hexagonal system.

NEB analysis for α -Li₄B₇O₁₂Cl

 $E_{hb} < E_{ha} < E_{mb}$ mb C, b

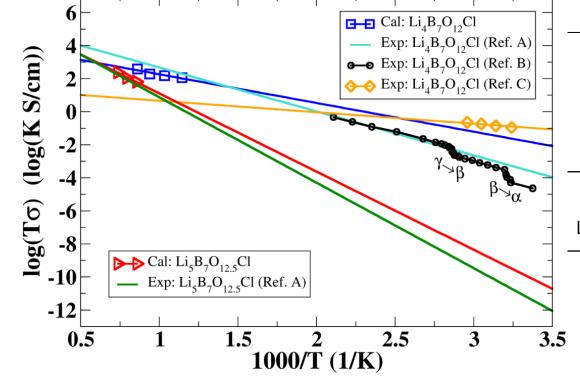
hb: host b-type site; **ha:** host a-type site**mb:** metastable b-type site (native vacancy)

→ The concerted migration mechanism reduces the energy barrier for Li ion conduction in α -Li₄B₇O₁₂Cl.


NEB: ¹Jónsson et al., *in Classical and Quantum Dynamics in Condensed Phase Simulations*, World Scientific, Singapore (1998) ²Henkelman et al., *J. Chem. Phys.* **113**, 9901-9904 (2000)

Results of molecular dynamic simulations

• Time-dependent positions of Li ions

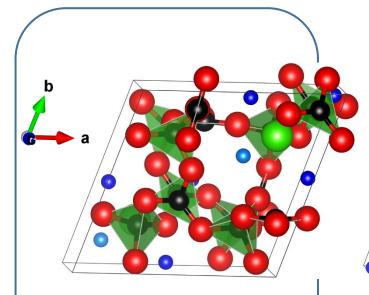

Model of $Li_4B_7O_{12}Cl$ crystal cell with superposed Li positions of molecular dynamics simulation at $\langle T \rangle = 1162$ K.

Site occupancy factor: $f_s(t) = \frac{1}{N_s^{Li}} \sum_{i=1}^{N^{Li}} n_s^i(t), i = 1, 2, \dots, N^{Li}$ **Time-averaged:** $\bar{f}_s(t) = \frac{1}{t} \int_0^t f_s(t') dt'$ 873 K — 967 K — 1064 K — 1162 K 1.0 0.9 0.8 **T**+ 0.7 Top: host 6b (24*c*-like) sites Bottom: host 2a + vacant 6b (32*e*-like) sites 0.5 T+ 0.4 0.3 0.2[∟]0 10 20 30 50 60 70 80 90 100 110 120 40 t (ps) *Recall: the three reported forms α (T < 310 K), β (310 K <T <

348 K), γ (T > 348 K) mainly differ in lattice site occupancy.

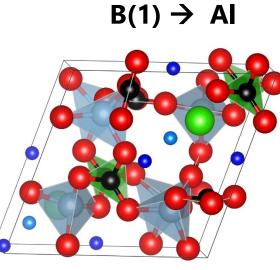
Ionic conductivities

Ref. A: Cales *et al., Solid State Commun.* **24**, 323 (1977) Ref. B: Jeitschko *et al., Acta Cryst.* B. **33**, 2767-2775 (1977) Ref. C: Tan *et al., ACS Appl. Energy Mater.* **2**, 5140 (2019).


Materials	Analysis	Samples	E _a (eV)	σ (T = 300 K, S/cm)
	Cal.	Ideal	0.34	3.83 x 10 ⁻⁴
Li ₄ B ₇ O ₁₂ Cl	Exp: Ref (A)	Polycrystalline	0.53	1.00 x 10 ⁻⁷
	Exp: Ref (B)	Single crystal	0.49	0.98 x 10 ⁻⁷
	Exp: Ref (C)	Polycrystalline	0.14	3.68 x 10⁻⁴
	Cal.	Ideal	0.84	6.58 x 10 ⁻¹²
Li ₅ B ₇ O _{12.5} Cl*	Exp: Ref (A)	Polycrystalline	1.03	2.14 x 10 ⁻¹⁴

$$\sigma(T)=
ho q^2rac{D_{tr}(T)}{k_BTH_r}~~$$
 with $H_r=1$, $D_{tr}(T)=D_0e^{-E_a^{
m MD}/k_BT}$

*The ordered $Li_5B_7O_{12.5}CI$ has a similar B-O framework with $Li_4B_7O_{12}CI$ but a different ordering of Li ions.


Ionic substitutions in α -Li₄B₇O₁₂Cl

Li₄B₇O₁₂Cl Original material

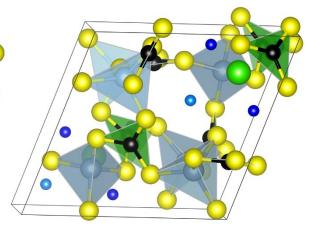
Rhombohedral R3c

 $\begin{array}{l} a_{p} = b_{p} = c_{p} = 8.574 \text{ Å} \\ \alpha_{p} = \beta_{p} = \gamma_{p} = 60.124^{\circ} \\ a_{c} = b_{c} = c_{c} = 12.137 \text{ Å} \\ \alpha_{c} = \beta_{c} = \gamma_{c} = 90.108^{\circ} \end{array}$

Li₄Al₃B₄O₁₂Cl Realized in experiment*

Rhombohedral R3c

 $\begin{aligned} a_{p} &= b_{p} = c_{p} = 9.133 \text{ Å} \\ \alpha_{p} &= \beta_{p} = \gamma_{p} = 61.194^{\circ} \\ a_{c} &= b_{c} = c_{c} = 13.033 \text{ Å} \\ \alpha_{c} &= \beta_{c} = \gamma_{c} = 91.022^{\circ} \\ ^{*}\text{Kajihara et al., Bull. Chem. Soc. Jpn.} \\ \textbf{90}, 1279-1286 (2017) \end{aligned}$

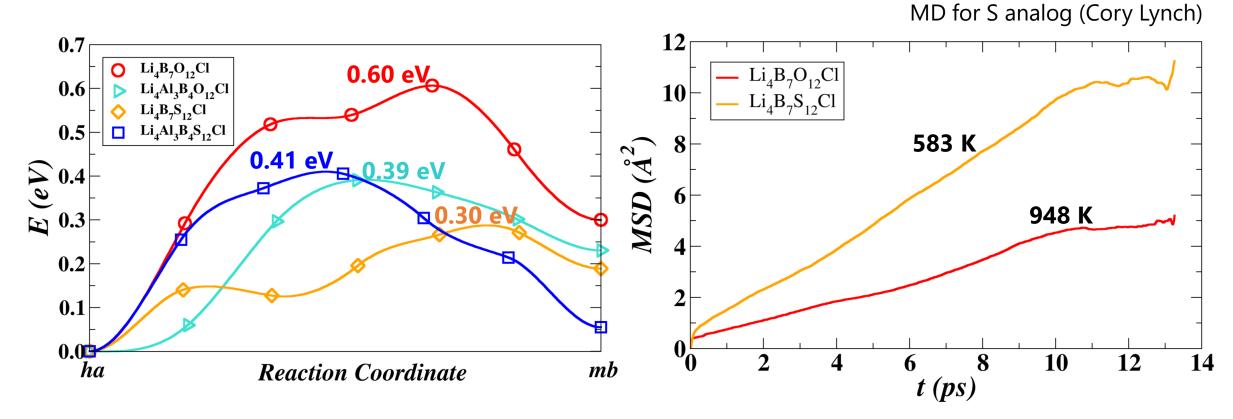

 $0 \rightarrow S$

Li₄B₇S₁₂Cl Predicted in this work

Rhombohedral R3c $a_n = b_n = c_n = 10.584 \text{ Å}$

$$\alpha_{p} = \beta_{p} = \gamma_{p} = 59.704^{\circ}$$
$$a_{c} = b_{c} = c_{c} = 14.934 \text{ Å}$$
$$\alpha_{c} = \beta_{c} = \gamma_{c} = 89.743^{\circ}$$

 $B(1) \rightarrow AI \& O \rightarrow S$


Li₄Al₃B₄S₁₂Cl Predicted in this work

Rhombohedral R3c

 $\begin{array}{l} a_{p}=b_{p}=c_{p}=11.386 \text{ Å} \\ \alpha_{p}=\beta_{p}=\gamma_{p}=68.601^{\circ} \\ a_{c}=b_{c}=c_{c}=15.933 \text{ Å} \\ \alpha_{c}=\beta_{c}=\gamma_{c}=88.771^{\circ} \end{array}$

Comparison of diffusional properties

NEB energy diagram of concerted migrations

Mean squared displacement vs. time interval

Li₄Al₃B₄O₁₂Cl Kajihara *et al., Bull. Chem. Soc. Jpn.* **90**, 1279–1286 (2017)

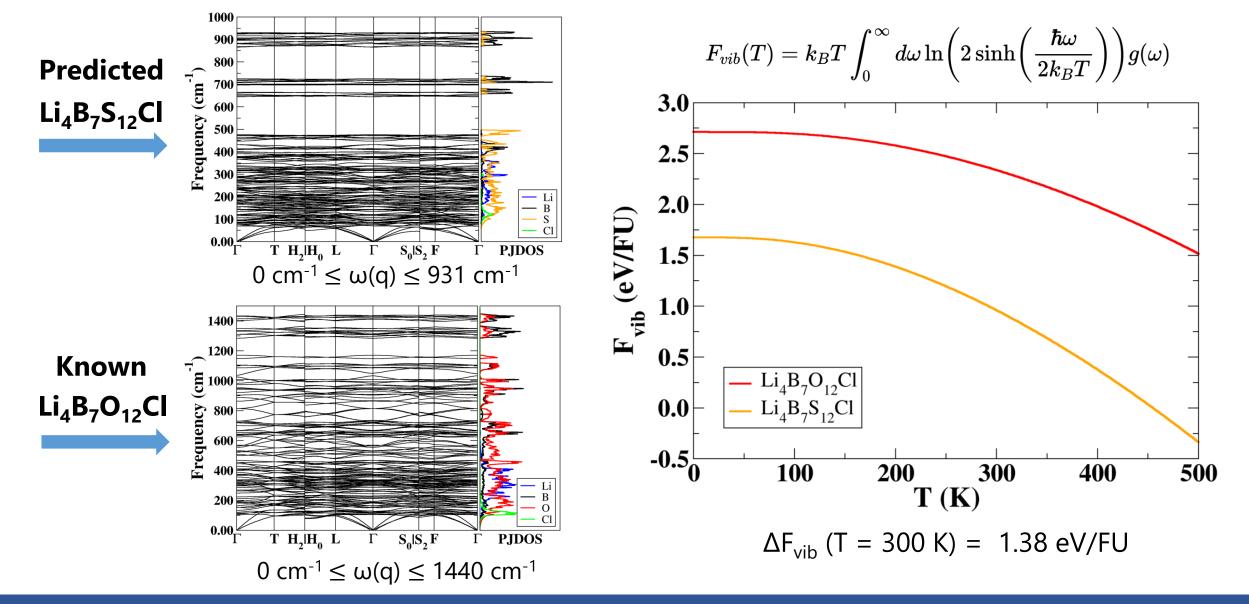
 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{O}_{12}\mathrm{Cl} \rightarrow 1/2\ \mathrm{Li}_4\mathrm{B}_7\mathrm{O}_{12}\mathrm{Cl} + 1/2\ \mathrm{Li}\mathrm{B} + 1/2\ \mathrm{Li}\mathrm{Cl}\mathrm{O}_4 + \mathrm{Li}\mathrm{Al}\mathrm{O}_2 + 2\ \mathrm{Al}\mathrm{O} - 14.29\ \mathrm{eV}$

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{O}_{12}\mathrm{Cl} \rightarrow 1/2\ \mathrm{Li}_4\mathrm{B}_7\mathrm{O}_{12}\mathrm{Cl} + 1/2\ \mathrm{Al}_5\mathrm{BO}_9 + 1/2\ \mathrm{Al}\mathrm{ClO} + \mathrm{Li}_2\mathrm{O} - 0.8\ \mathrm{eV}$

Li₄B₇S₁₂Cl (proposed)

 $Li_4B_7S_{12}Cl \rightarrow 3~Li+7~B+12~S+LiCl-14.38~eV$

 $\mathrm{Li}_4\mathrm{B}_7\mathrm{S}_{12}\mathrm{Cl} \rightarrow \mathrm{Li}_3\mathrm{B}\mathrm{S}_3 + 3\ \mathrm{B}_2\mathrm{S}_3 + \mathrm{Li}\mathrm{Cl} + 0.46\ eV$


Li₄Al₃B₄S₁₂Cl (proposed)

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{S}_{12}\mathrm{Cl}
ightarrow 3~\mathrm{Li} + 3~\mathrm{Al} + 4~\mathrm{B} + 12~\mathrm{S} + \mathrm{Li}\mathrm{Cl} - 18.35~\mathrm{eV}$

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{S}_{12}\mathrm{Cl} \rightarrow 3/2\ \mathrm{Li}_2\mathrm{S} + 3/2\ \mathrm{Al}_2\mathrm{S}_3 + 2\ \mathrm{B}_2\mathrm{S}_3 + \mathrm{Li}\mathrm{Cl} + 0.87\ \mathrm{eV}$

Phonon calculations

Summary of the project

- The ground state structure of the room-temperature form of Li₄B₇O₁₂Cl is identified to have rhombohedral R3c symmetry. The phase is estimated to be stable from the analysis of the convex hull approach and of the phonon spectrum.
- □ The NEB calculations indicate that Li ion migration in Li₄B₇O₁₂Cl most likely proceeds via concerted migration mechanisms involving two host sites and one natural vacancy.
- □ The room-temperature ionic conductivity of Li₄B₇O₁₂Cl, calculated from the MD simulation results, is on the order of 10⁻⁴ S/cm, which is in good agreement with the recent experimental measurement for pure polycrystalline samples.
- □ Consistent with the recent experimental results, our preliminary calculations also find reduced Li ion migration barriers in the partially B-replaced compound Li₄Al₃B₄O₁₂Cl. The studies on predicted compounds Li₄B₇S₁₂Cl and Li₄Al₃B₄S₁₂Cl also suggest improved Li ion conducting performance compared with Li₄B₇O₁₂Cl.
- \Box The chemical stabilities of the Li₄B₇S₁₂Cl and Li₄Al₃B₄S₁₂Cl need further investigation.

Manuscript to be submitted

Research background: General motivation and theoretical tools

Finished/ongoing projects: Inputs and outcomes

Na₄P₂S₆, Li₄P₂S₆, and possible alloy Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 4, 045406 (2020)

Phonon dispersion

Yan Li, W. C. Kerr, and N. A. W. Holzwarth

J. Condens. Matter Phys. 32, 055402 (2020)

Li₃BO₃ and Li₃BN₂ (I & II) Yan Li, Zachary D. Hood, and N. A. W. Holzwarth Phys. Rev. Mater. 5, 085402 & 085403 (2021) $Li_{4+x}B_7O_{12+x/2}Cl$ (x = 0, 1) and related

$$Li_{7.5}B_{10}S_{18}X_{1.5}$$
 (X = Cl, Br, I)

New fast Li ion electrolytes Li₇₅B₁₀S₁₈X₁₅

$Li_{7.5}B_{10}S_{18}X_{1.5}$ (X = CI, Br, I)

Monoclinic C2/c (No. 15) **Disordered Li and X sites** Room-T $\sigma \sim mS/cm$

Communications

Ion Conductivity Very Important Paper

How to cite: Angew. Chem. Int. Ed. 2021, 60, 6975-6980 doi.org/10.1002/anie.202013339 International Edition: German Edition: doi.org/10.1002/ange.202013339

Fast Li-Ion Conductivity in Superadamantanoid Lithium Thioborate Halides

Kavish Kaup, Abdeljalil Assoud, Jue Liu, and Linda F. Nazar*

WAKE FOREST

UNIVERSITY

[*] K. Kaup, A. Assoud, L. F. Nazar

Department of Chemistry, Department of Chemical Engineering and the Waterloo Institute for Nanotechnology, University of Waterloo 200 University Ave W, Waterloo, Ontario N2L 3G1 (Canada) E-mail: lfnazar@uwaterloo.ca

I. Liu

Neutron Scattering Division, Oak Ridge National Laboratory Oak Ridge, TN 37831 (USA)

lithium and halide anion disorder. The phases are nonstoichiometric, adopting slightly varying halide contents within the materials. These new superadamantanoid materials exhibit high ionic conductivities up to 1.4 mScm⁻¹, which can be effectively tuned by the polarizability of the halide anion within the channels.

of supertetrahedral clusters (also antanoid) $B_{10}S_{20}$ structural units. ructures were observed in lithium licates,[11,12] lithium nitridophoser thioborates such as Ag₆B₁₀S₁₈ hany other sulfide-based materietworks are of interest because the anions to distribute into the void For frameworks with a large void akly bonded to the surrounding tion mobility within the structure.

For such materials, the highest reported room-temperature ionic conductivity is only $4 \times 10^{-4} \,\mathrm{S \, cm^{-1}}$ for sodium phosphidosilicates,^[11] and $\approx 10^{-7} \, \text{S cm}^{-1}$ for lithium phosphidosilicates.^[21] An ionic conductivity greater than 10⁻⁴ Scm⁻¹ is often considered fast, but at least 10⁻³ Scm⁻¹ is necessary to achieve practical solid-state batteries.[22]

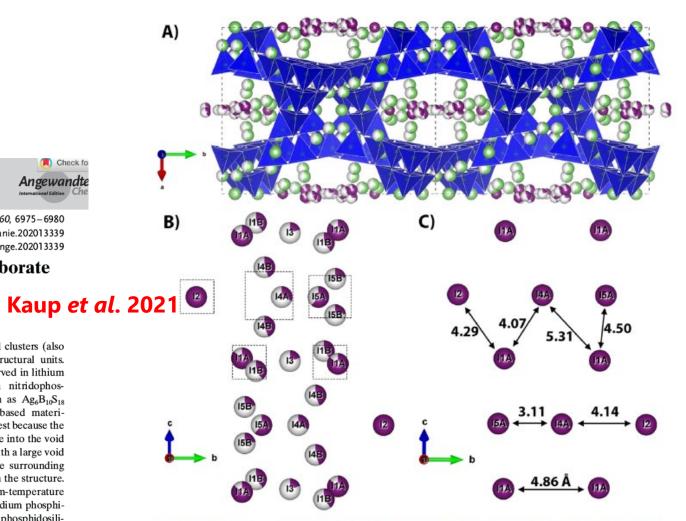


Figure 3. A) Li₂ B₁₀S₁₈I₁₅ structure with lithium and iodine in the channels. B) Average structure (refined from NPD at 300 K) and C) local structure (refined from NPDF at 290 K) of iodine in the tunnels. The iodide ions distributed through the channel are positioned in groups, as indicated by the dashed boxes in (B).

Check fo Angewandte

Comparison of the current and previous projects

Similarities –

- Same atomic elements
- B-S framework + large voids for Li and Cl
- Favorable Li ion conductivity

Differences –

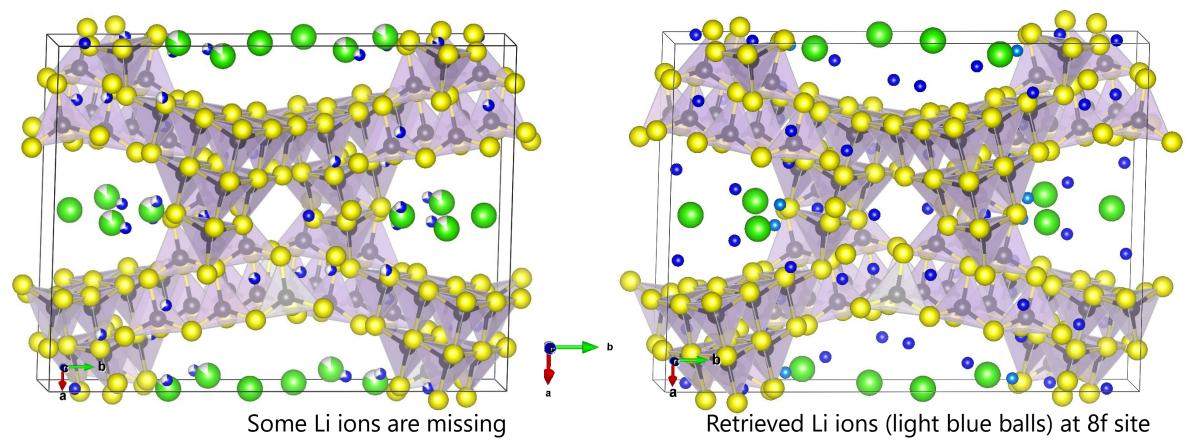
Li_{7.5}B₁₀S₁₈Cl_{1.5}

- Experimentally realized; chemically stable
- Framework based on BS₄ tetrahedra
- Low symmetry structure (monoclinic)
- Large voids without obvious structure
- 148 ions in MD simulation cell (primitive C2/c lattice)

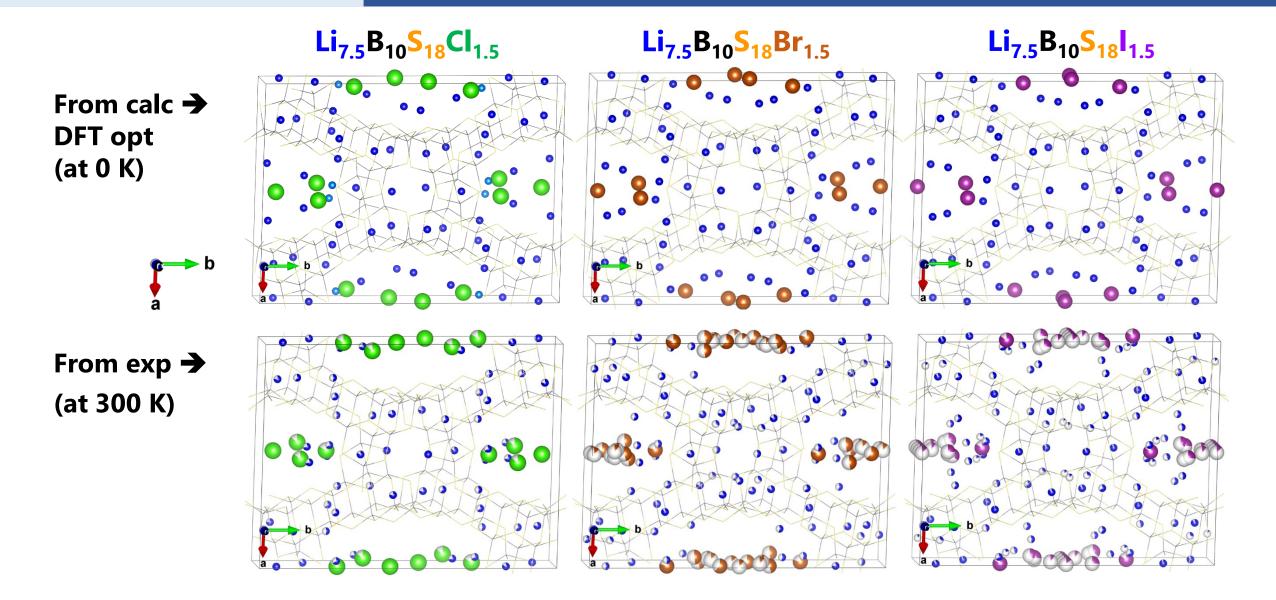
- Not (yet) experimentally realized; chemical reactivity
- Framework based on $BS_4 + BS_3$ units
- Based on ordered rhombohedral structure
- Structured voids
- 196 ions in MD simulation cell (similar to conventional FCC lattice)

Structure of Li_{7.5}B₁₀S₁₈Cl_{1.5}

From experiment


WAKE FOREST

UNIVERSITY


Li_{7.5}B₁₀S₁₈Cl_{1.5} from Kaup *et al*. (2021) Monoclinic C2/c (No. 15)

From computation

Li_{7.5}B₁₀S₁₈Cl_{1.5} from DFT optimization Monoclinic C2/c (No. 15)

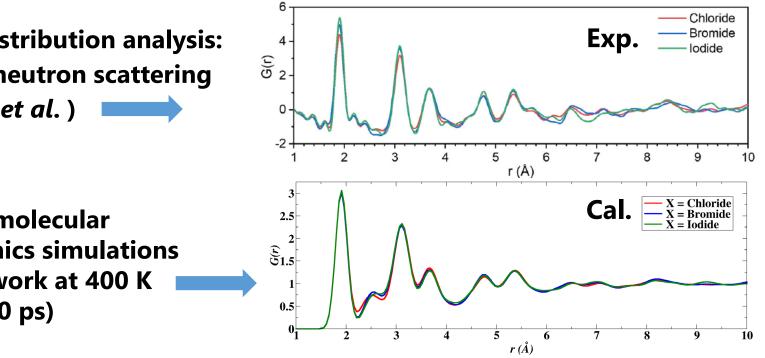
Optimized vs. experimental structures

WAKE FOREST

UNIVERSITY

Comparison of lattice parameters

Numerical comparison of conventional lattice parameters of optimized ("cal") and experimental (Kaup et al.)) Li_{7.5}B₁₀S₁₈X_{1.5} (X=Cl, Br, I).


UNIVERSITY

FOREST

Pair distribution analysis: From neutron scattering (Kaup *et al*.)

From molecular dynamics simulations (This work at 400 K over 30 ps)

	X = CI (cal. /exp.)	X = Br (cal. /exp.)	X = I (cal. /exp.)
a (Å)	20.96/21.16	20.88/21.21	21.09/21.32
b (Å)	21.66/22.23	21.19/21.25	21.40/21.27
c (Å)	16.02/16.13	16.07/16.26	16.08/16.21
$\alpha = \gamma$ (deg)	90.00/90.00	90.00/90.00	90.00/90.00
B (deg)	128.75/128.92	128.43/128.82	128.70/128.77
Volume (Å ³)	5672.62/5638.31	5572.37/5708.07	5664.13/5731.36

Based on DFT static lattice calculations, several decomposition pathways indicate endothermic reactions at equilibrium and suggest chemical stability of Li_{7.5}B₁₀S₁₈X_{1.5}

$$egin{aligned} {
m Li}_{7.5}{
m B}_{10}{
m S}_{18}{
m Cl}_{1.5} &
ightarrow 1.5~{
m Li}{
m Cl}+5~{
m B}_2{
m S}_3+3~{
m Li}_2{
m S}-0.8~{
m eV} \ {
m Li}_{7.5}{
m B}_{10}{
m S}_{18}{
m Cl}_{1.5} &
ightarrow 1.5~{
m Li}{
m Cl}+4~{
m B}_2{
m S}_3+2~{
m Li}_3{
m B}{
m S}_3-1.0~{
m eV} \end{aligned}$$

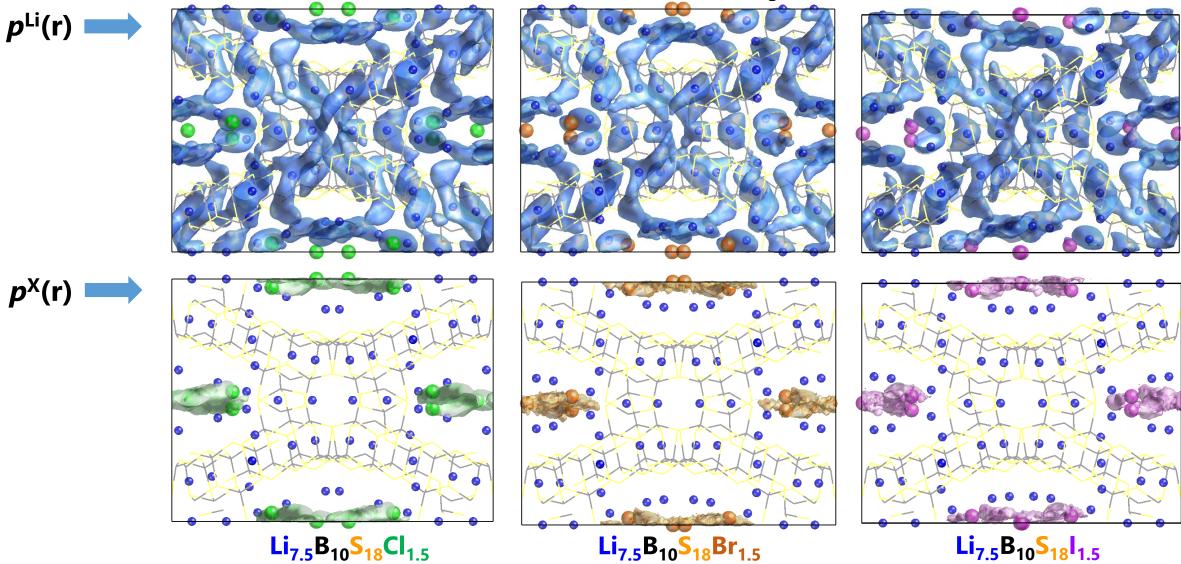
$$\begin{split} & Li_{7.5}B_{10}S_{18}Br_{1.5} \rightarrow 1.5\ LiBr + 5\ B_2S_3 + 3\ Li_2S - 0.9\ eV \\ & Li_{7.5}B_{10}S_{18}Br_{1.5} \rightarrow 1.5\ LiBr + 4\ B_2S_3 + 2\ Li_3BS_3 - 1.1\ eV \end{split}$$

$$\begin{split} \mathrm{Li}_{7.5}\mathrm{B}_{10}\mathrm{S}_{18}\mathrm{I}_{1.5} &\to 1.5\ \mathrm{LiI} + 5\ \mathrm{B}_2\mathrm{S}_3 + 3\ \mathrm{Li}_2\mathrm{S} - 1.0\ \mathrm{eV} \\ \mathrm{Li}_{7.5}\mathrm{B}_{10}\mathrm{S}_{18}\mathrm{I}_{1.5} &\to 1.5\ \mathrm{LiI} + 4\ \mathrm{B}_2\mathrm{S}_3 + 2\ \mathrm{Li}_3\mathrm{BS}_3 - 1.2\ \mathrm{eV} \end{split}$$

Define a probability density* for the mobile ions

$$p^a(\mathbf{r}) = rac{1}{k_{ ext{max}}}\sum_{k=1}^{k_{ ext{max}}}\sum_{i\in a}^{N^a}\delta(\mathbf{r}-\mathbf{R}^a_i(t_k))$$

 N^a -- Number of ions of type a within the simulation cell $\mathbf{R}_i^a(t_k)$ -- Trajectories of ion i at sampling time t_k k_{\max} -- Number of time steps

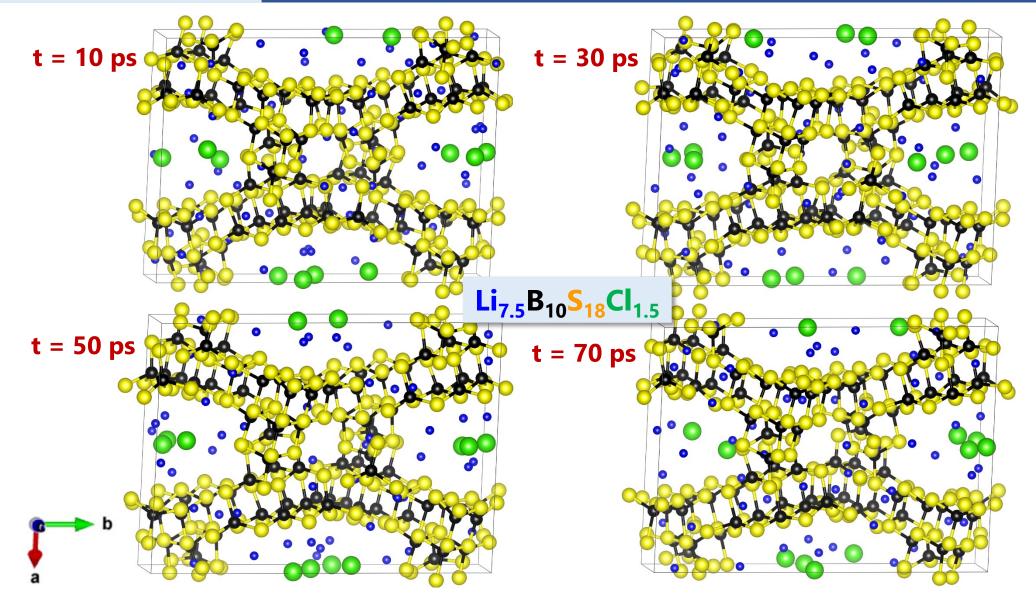

In practice, the δ function is approximated as an isotropic Gaussian shape

$$\delta({f s})pprox {1\over \left(2\pi\sigma^2
ight)^{3/2}}e^{-s^2/2\sigma^2}$$
 with σ chosen as 0.2 Å

*He, Zhu, and Mo, *Nat. Comm.* **8**, 15893 (2017)

Isosurface plots of P^a(r)

*Visualized along the c-axis from MD simulations at ~800 K



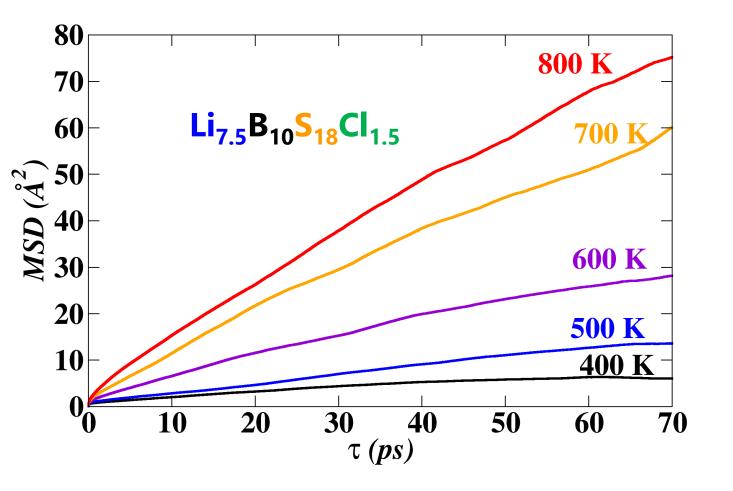
WAKE FOREST

UNIVERSITY

More details on the B-S bonds at T = 800 K

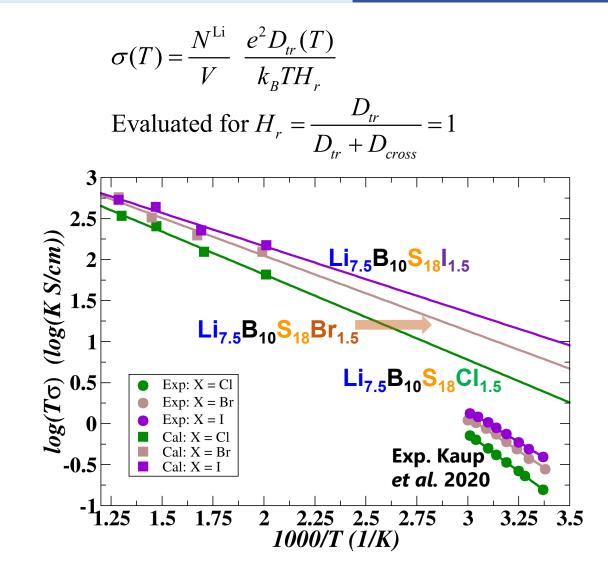
For an MD simulation at average temperature *T* :

$$\mathrm{MSD}(\tau,T) = \frac{1}{N^{\mathrm{Li}}} \left\langle \sum_{i=1}^{N^{\mathrm{Li}}} \left| \mathbf{R}_{i}^{\mathrm{Li}}(t+\tau) - \mathbf{R}_{i}^{\mathrm{Li}}(t) \right|^{2} \right\rangle_{t}$$

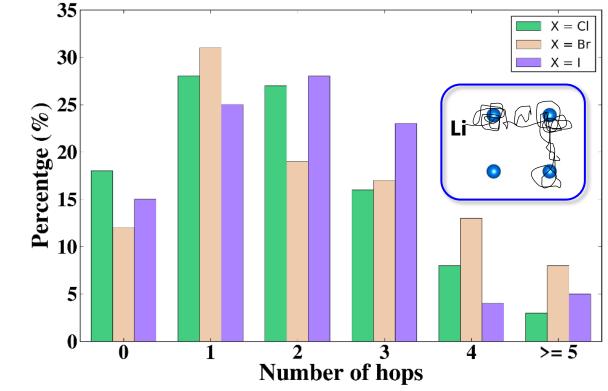

which is related to the tracer diffusion:

$$D_{tr}(T) = \lim_{\tau \to \infty} \left(\frac{1}{6\tau} \text{MSD}(\tau, T) \right).$$
 The Nernst-

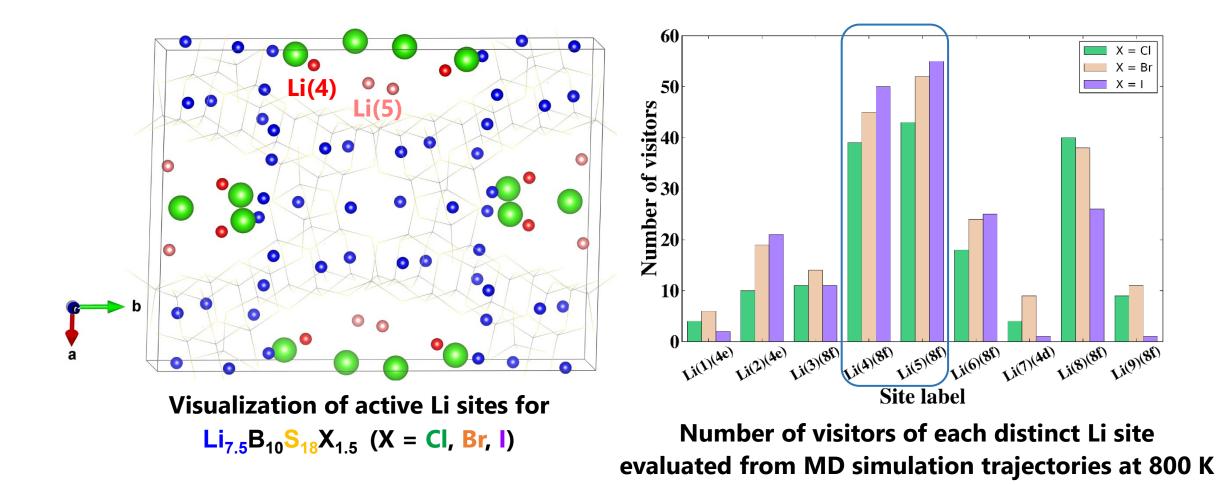
Einstein relation then leads to an estimate of


the ionic conductivity: $\sigma(T) = \frac{N^{\text{Li}}}{V} \frac{e^2 D_{tr}(T)}{k_B T H_r}$,

where V = volume, $k_B =$ Boltzmann constant, e = elementary charge, $H_r =$ Haven ratio. It is also reasonable to assume an Arrhenius behavior for the tracer diffusion with activation energy E_a : $D_{tr}(T) = D_{ref} e^{-E_a/k_B T}$.



Preliminary MD results for Li ion conductivity


Histogram of numbers of Li ion hops within 100 time intervals of 0.5 ps each at ~800 K

Each hopping event was assessed on the basis of the equilibrium sites of the optimized lattice. A hopping event was tabulated at each arrival time of an ion at a new site.

Further assessment of Li ion correlations

X = CIX = Br

X = I

Summary of the project

- Computationally determined plausible idealized structures for the Li_{7.5}B₁₀S₁₈X_{1.5} (X = Cl, Br, I) materials developed by Kaup *et al.* (2021), consistent with published X-ray and neutron diffraction analyses.
- Computed equilibrium total energies suggest chemical stability against decomposition.
- □ MD simulations show remarkable 3-dimensional Li ion mobility within the $B_{10}S_{18}$ framework at temperatures close to 400 K and higher.
- Preliminary analysis of detailed MD trajectories suggests concerted mechanisms for the Li ion motions primarily within the void cavities.

Manuscript in preparation

WAKE FOREST **Resources of publications and presentations**

http://users.wfu.edu/natalie/recentpubs.html

Link to Google Scholar Profile

UNIVERSITY

Computational study of Li₂BO₃ and Li₃BN₂ I: Electrolyte properties of pure and doped crystals and II: Stability analysis of pure phases and of model interfaces with Li anodes Yan Li, Zachary D. Hood, and N.A.W. Holzwarth Physical Review Materials 5, 085402 (2021) (I) and Physical Review Materials 5, 085403 (2021) (II) Local copies: I and II

"Computational and experimental (re)investigation of the structural and electrolyte properties of Li₄P₂S₆, and Na₄P₂S₆, and Li₂Na₂P₂S₆" Yan Li, Zachary D. Hood, and N.A.W. Holzwarth Physical Review Materials 4, 045406 (2020) Local copy

"Continuity of phonon dispersion curves in layered ionic materials " Yan Li, W. C. Kerr, and N. A. W. Holzwarth Journal of Physics: Condensed Matter 32 055402 (2019) (local copy)

"Updated comments on projector augmented wave (PAW) implementations within various electronic structure code packages" N. A. W. Holzwarth Computer Physics Communications 234 25-29 (2019) https://doi.org/10.1016/j.cpc.2019.05.009 (local copy)

http://users.wfu.edu/natalie/presentations.html

- Presentation by Yan Li at the <u>240th ECS Meeting</u> Oct 10-14, 2021 -- "Computational Investigation of Li Boracite Li₄B₇O₁₂Cl and Related Materials as Solid Electrolytes " (link to abstract)
- Presentation by N. A. W. Holzwarth at the 240th ECS Meeting_Oct 10-14, 2021 -- "First Principles Simulations to Understand the Structural and Electrolyte Properties of Idealized Li_{7.5}B₁₀S₁₈X_{1.5} (X = Cl. Br. I) -- Li Superionic Conductors Recently Identified in the Experimental Literature " (link to abstract)
- Presentation by N. A. W. Holzwarth at the Electronic Structure Discussion Group at Cambridge University invited by WFU alum Angela Harper -- June 9. 2021 -- First principles simulations of electrolyte materials with a view toward all solid-state battery technology -- Li₄P₂S₆ $Na_4P_2S_6$, and possible alloys
- Presentation by N. A. W. Holzwarth at the 10th ABINIT International Developer Workshop May 31-June 4, 2021 -- Progress on selfconsistent meta-gga PAW datasets from ATOMPAW (PP slides)
- Presentation by Yan Li at the March 2021 APS meeting -- "Li₃BO₃ and Li₃BN₂: Computational study of structural and electrolyte properties of pure and doped crystals" (link to abstract)
- Annotated slides that would have been presented by Yan Li at the cancelled March 2020 APS meeting -- "Prediction and analysis of a sodium ion electrolyte: Li2Na2P2S6

Acknowledgements

DEAC

Photo taken at ECS meeting with \rightarrow our experimental collaborator Dr. Zachary Hood (ANL) and Professor Natalie Holzwarth in Atlanta, GA in Oct. 2019

11/04/2021

Thank you for your attending!

Image from the department website

all the water matter store is

1

Xà