

David "Cory" Lynch, Y. Li, and N. Holzwarth

242nd ECS Meeting

October 9, 2022

WFU DEAC HPC Cluster

NSF

Grant: DMR-1940324

Research Motivation: Active Field Interest

a.) Number of peer-reviewed scientific publications relating to solid-state lithium battery research from 2000-2020
 b.) Solid-state lithium battery research breakdown by type

 (Image credit: ACS Energy Letters, 2021
 DOI: 10.1021/acsenergylett.1c00445)

- Publications in solid-state battery research increased by a factor of ~7 from 2010-2020
- Significant research interest is focused on Material Synthesis/Properties
- This leaves Theory and Modelling as an area in need of more research

Ę

Research Motivation: Why Solid-State Batteries?

Li-ion Battery (Liquid Electrolyte)

b.)

Solid-State Li-ion Battery Stack (Solid Electrolyte)

a.) Schematic illustration of the internal components of a typical Li-ion battery.b.) Schematic illustration of an ideal high-energy Solid-State battery stack.

a.)

(Image credit: Journal of The Electrochemical Society, 2017. DOI: 10.1149/2.1451709jes) (Image credit: ACS Energy Letters, 2021. DOI: 10.1021/acsenergylett.1c00445)

- Pure lithium anode can greatly improve performance
- Solid electrolytes have the following potential benefits:
 - Expected to be stable in contact with pure lithium
 - Competitive ionic conductivity with liquid electrolytes and negligible electronic conductivity
 - Improved safety by addressing leakage of toxic liquid electrolytes
 - Improved safety by addressing fire/explosion risk from flammable liquid electrolytes
 - Improved longevity by replacing liquid electrolytes that decompose and reduce functionality

Research Motivation: Previous Boracite Results

a.) Li₄B₇O₁₂Cl experimental structure and b.) Arrhenius plot of the conductivity vs. temperature Image credit: Li and Holzwarth, 2022. DOI: 10.1103/PhysRevMaterials.6.025401

- Face Centered Cubic ($F\overline{4}3c$) α -phase reported at room temperature
- Disordered Lithium sites: 25% fractional occupancy
- Conductivity reported to be on the order of 3×10^{-4} *S/cm* at room temperature by Tan et. al. (DOI: 10.1021/acsaem.9b00812)
- Work by Dr. Li and Dr. Holzwarth agree with experimental performance results with new discoveries:
 - G.S. is Face Centered Rhombohedral (R3c) distortion of the cubic phase
 - 25% fractional Li sites in $F\overline{4}3c$ map to fully occupied Li sites in R3c, remaining 75% map to interstitial sites ³
 - Ion migration mechanisms involving concerted ion motion and interstitial sites.

Research Motivation: Partial Al Substitution

Li₄Al₃B₄O₁₂Cl experimental structure (a) and Arrhenius plot of the conductivity vs. temperature (b) Image credit: Kajihara et. al., 2017. DOI: 10.1246/bcsj.20170242

- Experimental investigation of substituting boron sites in Li4B7O12Cl with aluminum
- Found optimal y value of 0.43 : the ratio of Al2O3 to B2O3 in the starting synthesis mixture
- Synthesized Li4Al3B4O12Cl and determined some of its properties:
 - Room temperature structure is similar to the original material: Face Centered Cubic ($F\overline{4}3c$)
 - Has similar performance conductivity reported to be on the order of 1×10^{-5} S/cm
 - Reported to be stable in contact with pure lithium metal

Research Motivation: S Substitution & Increased Li

- Experimental investigation of similar material with sulfur and higher lithium stoichiometry
- Compound has iodine instead of chlorine as the halogen in the structure
- Similar room temperature Face Centered Cubic ($F\overline{4}3c$) phase found, as well as new tetragonal ($I4_1/a$) phase
- Face Centered Cubic ($F\overline{4}3c$) phase found to be stable, tetragonal ($I4_1/a$) phase reported to be metastable
- Material found to have high conductivity and stability

Ļ

• Experimental conductivity calculated for cubic phase; found to be on the order of 5×10^{-4} S/cm

In This Work

- Starting from known boracites and thioboracites:
 - Li4B7O12Cl
 - Li4Al3B4O12Cl
 - Li6B7S13I
- Investigating predicted boracites and thioboracites:
 - Sulfur substitutions of known Li4-O materials:
 - Li4B7S12Cl
 - Li4Al3B4S12Cl
 - Chlorine substitution of known Li6-S material and similar derivatives (O, Al):
 - Li6B7S13Cl
 - Li6B7O13Cl
 - Li6Al3B4S13Cl
 - Li6Al3B4O13Cl

Computational Methods

- Ground State Structural Calculations
 - Density Functional Theory
- Phonon Density of States Calculations
 - Density Functional Perturbation Theory
- Ionic Diffusion and Conductivity
 - Ab Initio Molecular Dynamics
 - Born-Oppenheimer Approximation

Known Structures: Li₄B₇O₁₂Cl and Li₄Al₃B₄O₁₂Cl

 $Li_4B_7O_{12}CI$ (a) and $Li_4AI_3B_4O_{12}CI$ (b) rhombohedral R3c ground state structures

Li₄B₇O₁₂Cl Conventional Cell

• R3c symmetry

a.)

- Lattice Constant = 12.1 angstroms
- Lattice Angle = 90.1 degrees

Li₄Al₃B₄O₁₂Cl Conventional Cell

- R3c symmetry
- Lattice Constant = 13.0 angstroms
- Lattice Angle = 91.1 degrees

Predicted Structures: Li₄B₇S₁₂Cl and Li₄Al₃B₄S₁₂Cl

 $Li_4B_4S_{12}CI$ (a) and $Li_4AI_3B_4S_{12}CI$ (b) rhombohedral R3c ground state structures

Li₄B₇S₁₂Cl Conventional Cell

- R3c symmetry
- Lattice Constant = 14.9 angstroms
- Lattice Angle = 89.8 degrees

Li₄Al₃B₄S₁₂Cl Conventional Cell

- R3c symmetry
- Lattice Constant = 16.1 angstroms
- Lattice Angle = 89.6 degrees

Predicted Structures: Li₆B₇O₁₃Cl and Li₆Al₃B₄O₁₃Cl

Li₆B₇O₁₃Cl Ground State (R3C)

Li₆Al₃B₄O₁₃Cl Ground State (R3C)

 $Li_6B_7O_{13}CI$ (a) and $Li_6AI_3B_4O_{13}CI$ (b) rhombohedral R3c ground state structures

Li₆B₇O₁₃Cl Conventional Cell

• R3c symmetry

a.)

- Lattice Constant = 12.2 angstroms
- Lattice Angle = 89.4 degrees

Li₆Al₃B₄O₁₃Cl Conventional Cell

- R3c symmetry
- Lattice Constant = 13.0 angstroms
- Lattice Angle = 91.5 degrees

 $Li_6B_7S_{13}Cl$ rhombohedral R3c (a) and monoclinic Cc (b) structures

Li₆B₇S₁₃Cl Conventional Cell

- R3c symmetry
- Lattice Constant = 15.1 angstroms
- Lattice Angle = 89.2 degrees

Li₆B₇S₁₃Cl Conventional Cell

- Cc symmetry
- Lattice Constants = (18.5, 10.5, 10.8) angstroms
- Lattice Angles = (90.0, 124.6, 90.0) degrees

Finding the Ground State of the Li6 Materials

- Zero energy is set to the respective rhombohedral (R3c) structural energy
- For Li6O, we see the monoclinic structure is <u>higher</u> in energy by 2.31 eV
- This confirms the ground state structure is R3c as expected
- For **Li6S**, we see that the monoclinic structure is <u>lower</u> in energy by 0.70 eV
- This suggests the R3c structure is NOT the ground state structure
- The monoclinic structure is the current ground state candidate for Li6S

Chemical Stability: Li4 vs Li6

- ΔE_{rxn} Li6O: -1.58 eV / FU
- ΔE_{rxn} Li6S: -1.05 eV / FU
- ΔE_{rxn} Li6AlO: -0.07 eV / FU

- How stable are the Li6 materials compared to the Li4 materials?
- Look at reaction energy difference, ΔE_{rxn} , of decomposition reaction:
- $Li_6B_7X_{13}Cl \rightarrow Li_4B_7X_{12}Cl + Li_2X$
- X = O or S
- If $\Delta E_{rxn} = E_{left} E_{right} < 0$, then the material is more stable than the decomposition products
- All **Li6 materials** are <u>more</u> <u>energetically favorable</u> than Li4

Chemical Stability: Al vs Pure Boron

- ΔE_{rxn} Li4AlO: -3.18 eV / FU
- ΔE_{rxn} Li4AlS: -4.17 eV / FU
- ΔE_{rxn} Li6AlO: -1.67 eV / FU

- How stable are Al substituted materials compared to pure boron materials?
- Look at reaction energy difference, ΔE_{rxn} , of decomposition reaction:
- $Li_nAl_3B_4X_mCl + 3B \rightarrow Li_nB_7X_mCl + 3Al$
- X = O or S, n = 4 or 6, m = 12 or 13
- If $\Delta E_{rxn} = E_{left} E_{right} < 0$, then the material is more stable than the decomposition products
- All **Al materials** are <u>more energetically</u> <u>favorable</u> than their pure boracites

Dynamic Stability: Phonon Density of States

- Li6S R3c (not shown) has imaginary modes ⇒ R3c not dynamically stable
- Li6S Cc is dynamically stable
- Li4O, Li4S, and Li6O R3c are dynamically stable
- Low frequencies < 400 cm⁻¹ involve Li vibration
- Higher frequencies involve the boracite framework
- Highest frequencies are the triangular BO₃ modes

Dynamic Stability: Framework Geometry

Li₄B₇S₁₂Cl Primitive Cell (R3c)

Li₆B₇S₁₃Cl Primitive Cell (Cc)

- Framework consists of BO3/BS3 planar triangles and BO4/BS4 tetrahedra
- Primitive Cell Analysis: All Li4 Structures:
 - 8 triangles (All B) and 6 tetrahedra (B or Al) All Li6O Structures:
 - 2 triangles (All B) and 12 tetrahedra (B or Al) Li6S Structures:
 - 14 tetrahedra, no triangles
- Structures with fewer BO3/BS3 triangles in the framework are more stable

Qualitative Performance: Sulfur vs. Oxygen

$Li_4Al_3B_4O_{12}Cl$ Li-ion Superposition

- Li₄Al₃B₄O₁₂Cl (left) vs. Li₄Al₃B₄S₁₂Cl (right) ion superposition diagrams
- Li positions superimposed over ~23 ps of simulation time
- Sampled every 50 timesteps at 1100K simulation temperature
- Much greater diffusion suggests sulfur significantly improves performance compared to oxygen

Li₄Al₃B₄S₁₂Cl Li-ion Superposition

Qualitative Performance: Al Substitution vs. Pure B

- Li₄B₇S₁₂Cl (left) vs. Li₄Al₃B₄S₁₂Cl (right) ion superposition diagrams
- Li positions superimposed over ~23 ps of simulation time
- Sampled every 50 timesteps at 1100K simulation temperature
- Greater diffusion may suggest Aluminum substitution improves performance compared to pure boron as well

Preliminary Summary

- Determined the ground state structures for predicted materials
 - All Li4 materials, Li6B7O13Cl, and Li6Al3B4O13Cl have rhombohedral (R3c) ground states
 - Li6B7S13Cl has a newly discovered monoclinic (Cc) ground state structure
- Determined relative chemical stability between substitutions
 - Li6 is energetically favorable compared to Li4
 - Partial aluminum substitution is energetically favorable compared to pure boron
- Determined dynamic stability of predicted materials
 - All pure boron Li4 and Li6 materials are dynamically stable
 - R3c phase of Li6B7S13Cl is not dynamically stable; ground state Cc is dynamically stable
- Determined qualitative measure of performance
 - Sulfur substitutions greatly improve diffusion and by extension, performance
 - Aluminum partial substitutions may also offer performance improvements

Future Investigation

- Find Li6Al3B4S13Cl ground state
- Finish stability analysis on predicted materials
- Determine conductivities quantitatively with AIMD
- Investigate ion diffusion and ion migration mechanisms
- Investigate interface with Li metal