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A  discussion on the use of density functional theory (DFT) in computational 
modeling.  

 To place DFT on the list of tools that can be used to analyze condensed 
matter materials, amplifying its strengths and weaknesses and 
comparing with some of the other tools

 To discuss the variety of computer codes available that implement DFT 
and their reliability

 To discuss DFT’s role in explaining/predicting experimental 
measurements.  Often it is the case that what is easy to compute may be 
difficult to measure and vise versa

Density functional theory and its role in 
condensed matter physics
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Density functional theory

Simple model Hamiltonians

Configuration interaction calculations

Natalie’s opinion – subject to rotten tomatoes
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Brief history
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Earlier story based on many electron atoms – Hartree-Fock theory
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For an atom of atomic number Z and N electrons, the Hamiltonian for the 
electrons of mass m is:
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Note that the nuclear-electron interaction term Hn-e is often called the 
“external” interaction in DFT.   Also note that the electron-electron 
repulsion term He-e excludes the “self” electron-electron interaction.
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( ) are orthogonal to each other, the expection value
of the Hamiltonian can be written in terms of single particle and two particle matrix elements:
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Comments --
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 Note that in this single Slater determinant formulation, the “self 
interaction” term automatically cancels out of the calculation.

 The term “electron correlation” is (often/always) defined to 
be additional energy estimated beyond the single Slater 
determinant or Hartree-Fock analysis.

 Extensions of this idea using a linear combination of Slater 
determinant have been extensively explored.
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Illustration for an atomic system

Consider the case of a single atom, choosing the 
coordinate system at the center of the nucleus.  We will 
further assume that the atom is spherically symmetric, 
averaging over the multiplet configurations.
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Example for carbon
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Results for carbon
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Note that this is not what is seen experimentally. However, as shown by Condon & 
Shortley in 1950’s, starting with the simple spherically symmetric picture, one can use 
degenerate perturbation theory to analyze the effects of the detailed electron-electron 
interactions.    From https://physics.nist.gov/PhysRefData/ASD/levels_form.html

Carbon 
energy 
levels
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Example for Cu
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Density functional theory approach – for the same Hamiltonian
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Digression on spatially varying electron density
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For a free electron system of   spin 1/2 particles, the
Fermi sphere times 2 can accomodate those electrons:
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tot kin ext Hartree x c( ) ( ) ( ) ( ) ( ) ( )E n E n E n E n E n E n= + + + +

Total electronic energy as a function of the electron density
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Brief  and simplified statement of density functional theory thanks to Kohn & Sham--
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Comments
 Self-interaction energy no longer cancels in EHartree and Ex and remains a 

serious problem.
 Exc is still (always) under development
 Extension of the non-relativistic treatment to the Dirac equations and the 

so-called “scalar relativistic” treatments as well as to “generalized” Kohn-
Sham equations when the exchange-correlation for contains kinetic energy 
density terms.

 Lagrange multipliers  εi  are not energy levels …..
 In this context,   density functional theory only applies to the treatment of 

the electrons.  For molecular materials, solids, and liquids, the Born-
Oppenheimer approximation must be used.  In many cases,  it is 
reasonable to treat the nuclei with the classical equations of motion.  
However, quantizing the linearized nuclear displacements leads to good 
estimates of the phonon spectrum.

 Estimates of electronic excitations, can be made by performing DFT with 
constraints.
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Some of the many numerical implementations of density functional theory
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Comparison with measured electron density reconstructed from X-ray analysis 
An example of a moderately successful DFT calculation --
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Attempts to estimate the reproducibility of DFT calculations -- 
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Si lattice 
constant

(figure from 
Science 
paper)
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How do the results from  independent codes compare?

(Figures from 
Science paper)
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Conclusions

 Density functional theory is a good starting point for the analysis of many 
condensed matter systems – especially for exploring properties 
associated with the electronic ground state.   

 It is important to continually scrutinize the physical and numerical 
approximations made while applying the formalism

 Become an active user of one or more software packages and perhaps 
develop your own codes

 Is it better for experimentalists to perform their own simulations or to 
collaborate with computationally focused colleagues?  
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Thank you!
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