Computational investigation of the structural and electrolyte properties of Li₄P₂S₆, Na₄P₂S₆, and Li₂Na₂P₂S₆

Yan Li¹, Zachary Hood², and <u>Natalie Holzwarth</u>¹
¹Department of Physics, Wake Forest University
²Electrochemical Materials Laboratory, MIT

WFU effort supported by NSF Grant DMR-1507942.

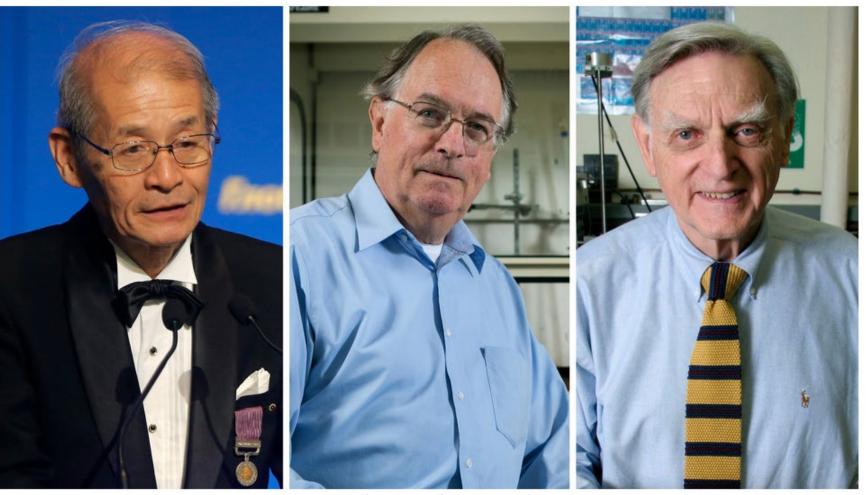
Contributions from previous students including Larry Rush and Cameron Kates are also gratefully acknowledged.

Zach, Natalie, and Yan posing at 256th Meeting of the Electrochemical Society in Atlanta, GA Oct. 12-17, 2019

Duke University

Outline

- Motivation
- > Experimental story
- Computational story
- > Outlook



- > Research on battery materials
- > The case for all solid state batteries
- > Challenges for realistic (idealistic??) computer modeling

> Research on battery materials

2019 Nobel Prize in Chemistry – for development of the Li ion battery

From NY Times

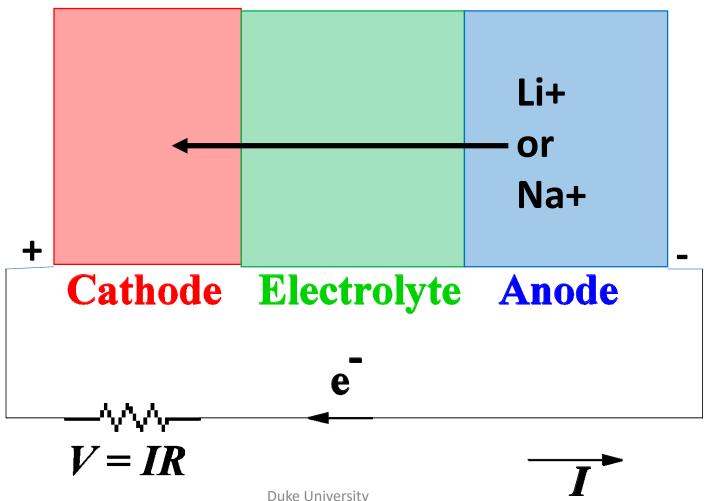
Akira Yoshino M. Stanley Whittingham John B. Goodenough

Research on battery materials

2019 Nobel Prize in Chemistry – for development of the Li ion battery

"Lithium-ion batteries have revolutionized our lives and are used in everything from mobile phones to laptops and electric vehicles," the Nobel Committee said. "Through their work, this year's Chemistry Laureates have laid the foundation of a wireless, fossil fuel-free society."

In the early 1970s, Whittingham developed the first functional lithium-ion battery, and in the following decade, Goodenough found a way to double the battery's potential. Yoshino made the battery safer by eliminating the need for pure lithium, a highly reactive metal.


From NY Times

Research on battery materials

Materials components of a Li or Na ion battery

Role of the electrolyte is to allow for the transport of Li+ or Na+ ions, excluding electrons from the battery and forcing them through the external circuit.

Illustrating discharge mode

> The case for all solid state batteries

Development of LiPON electrolyte films at Oak Ridge National Laboratory

Solid State Ionics 53-56 (1992) 655-661 North-Holland

Sputtering of lithium compounds for preparation of electrolyte thin films

N.J. Dudney, J.B. Bates, R.A. Zuhr and C.F. Luck

Solid State Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6030, USA

and

J.D. Robertson

Department of Chemistry, University of Kentucky, 800 Rose St., Lexington, KY 40506-0055, USA

Motivation -- The case for all solid state batteries

Makrials Views——	Adv. Energy Mater. 2015 , <i>5</i> , 1401408	ENERGY MATERIALS
www.MaterialsViews.com	DOI: 10.1002/aenm.201401408	www.advenergymat.de

Solid Electrolyte: the Key for High-Voltage Lithium Batteries

Juchuan Li,* Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J. Dudney* ORNL

Advantages

- Compatible and stable with high voltage cathodes
- Compatible and stable with Li metal anodes

Disadvantages

- ➤ Relatively low ionic conductivity (Compensated with the use of less electrolyte material?)
- Lower total capacity compared with liquid electrolytes

Demonstrated for LiNi_{0.5}Mn_{1.5}O₄/LiPON/Li

- > 10⁻⁶ m LiPON electrolyte layer achieved adequate conductivity
- > 10,000 cycles* with 90% capacity retention
- *1 cycle per day for 27 years

- Challenges for realistic (idealistic??) computer modeling
 - Technological challenges
 - > Improving the ionic conductivity
 - Stabilizing the electrolyte material in battery conditions
 - Stabilizing the cathode/electrolyte and anode/electrolyte interfaces
 - Checking accuracy of computational models in terms of physical and numerical approximations, comparing with real materials

Li₄P₂S₆ has been identified as a low conductivity decomposition product in the formation of lithium thiophosphate electrolytes.

Journal of the Ceramic Society of Japan 118 [4] 305-308 2010

Paper

Preparation and characterization of superionic conducting Li₇P₃S₁₁ crystal from glassy liquids

Keiichi MINAMI, Akitoshi HAYASHI and Masahiro TATSUMISAGO[†]

Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1–1 Gakuen-cho, Naka-ku, Sakai, Osaka, 599–8531

11/6/2019 Duke University 10

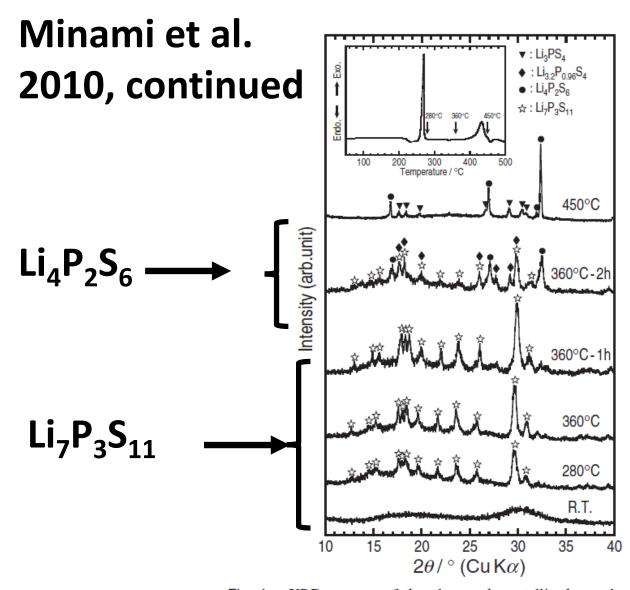


Fig. 1. XRD patterns of the glass and crystallized samples prepared from the glass by heat treatment at various temperatures and holding periods of time.

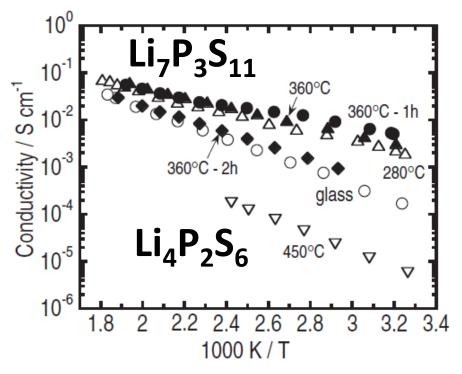


Fig. 2. Temperature dependence of conductivities for the crystallized samples prepared from the glass by heat treatment at various temperatures and holding periods of time.

Experimental story – Li₄P₂S₆ continued ---

JOURNAL OF SOLID STATE CHEMISTRY 43, 151-162 (1982)

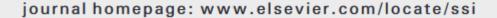
Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li₄P₂S₆

R. MERCIER, J. P. MALUGANI, B. FAHYS, J. DOUGLADE,* ET G. ROBERT

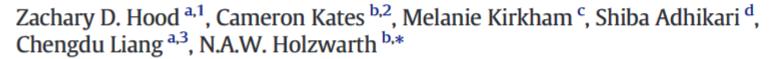
Laboratoire d'Electrochimie des Solides, ERA 810, et *Laboratoire de Chimie Physique, Université de Franche-Comté, 25030 Besancon Cedex, France

Structure analyzed as a disordered hexagonal structure with space group $P6_3/mcm$ (#193)

Experimental story – Li₄P₂S₆ continued --



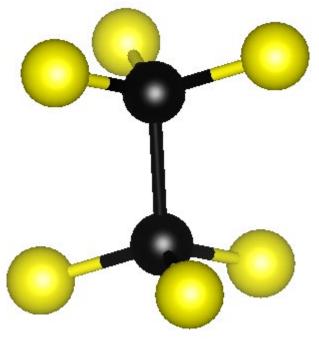
Solid State Ionics 284 (2016) 61-70


Contents lists available at ScienceDirect

Solid State Ionics

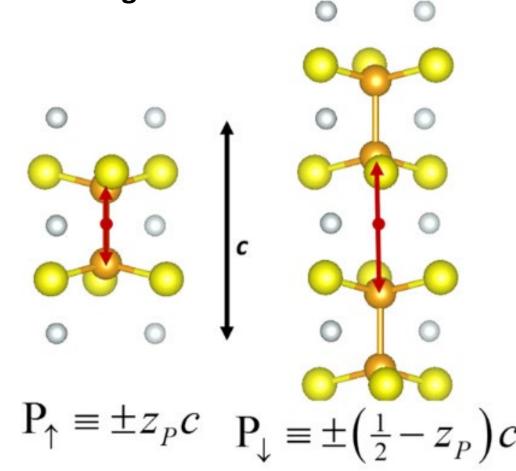
Structural and electrolyte properties of Li₄P₂S₆

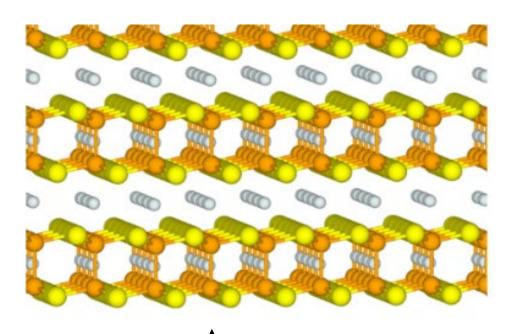
b Department of Physics, Wake Forest University, Winston-Salem, NC 27109-7507, USA


^c Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

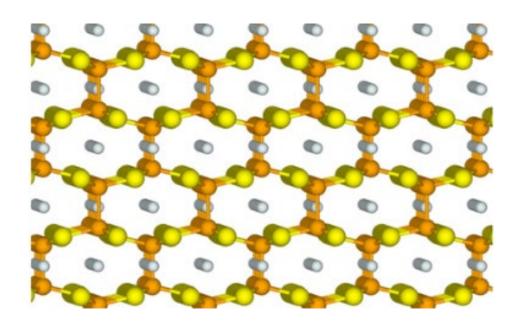
d Department of Chemistry, Wake Forest University, Winston-Salem, NC 27109-7486, USA

Experimental story – Li₄P₂S₆ continued --


P₂S₆ building blocks:



Mercier's disordered structure can be described in terms of the alternative stacking patterns of the building blocks:


Experimental story – Li₄P₂S₆ continued --Possible stacking structures

100% P**↑**Space group *P*31*m*

Energetically less favored according to simulations

50% P**↑** 50% P**↓**

Consistent with Mercier's analysis; energetically favored; not sensitive to detailed structure according to simulations

> Experimental story – Li₄P₂S₆ continued --

PAPER

View Article Online
View Journal | View Issue

Cite this: *Dalton Trans.*, 2018, **47**, 11691

Refinement of the crystal structure of Li₄P₂S₆ using NMR crystallography†

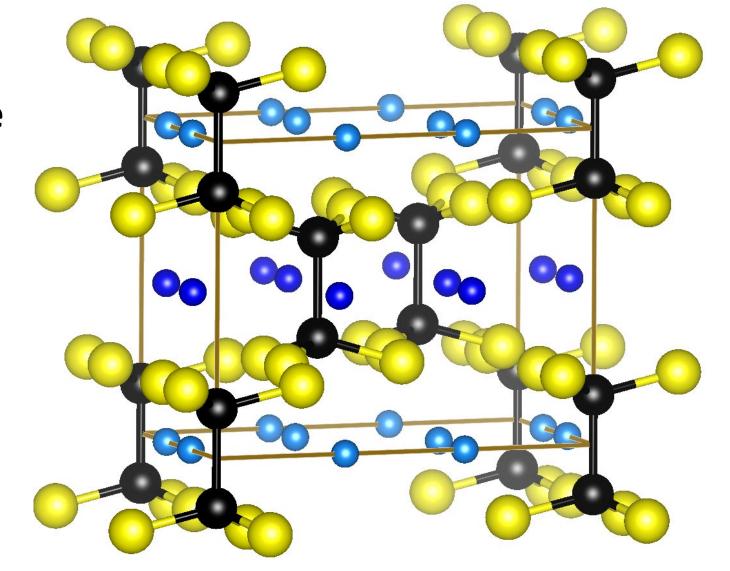
Sven Neuberger, (Da Sean P. Culver, Hellmut Eckert, (Dc, Molfgang G. Zeier (Db) and Jörn Schmedt auf der Günne (Da)

Prepare more highly crystalline samples; combine NMR and X-ray analysis to show that there are two inequivalent P sites

> Experimental story – Li₄P₂S₆ continued --

Neuberger structure

67% P**↑**


33% P

Space group $P321 \rightarrow P\overline{3}m1$

Li O

S

P 🔵

> Experimental story – Na₄P₂S₆ continued --

DOI: 10.1002/zaac.201300575

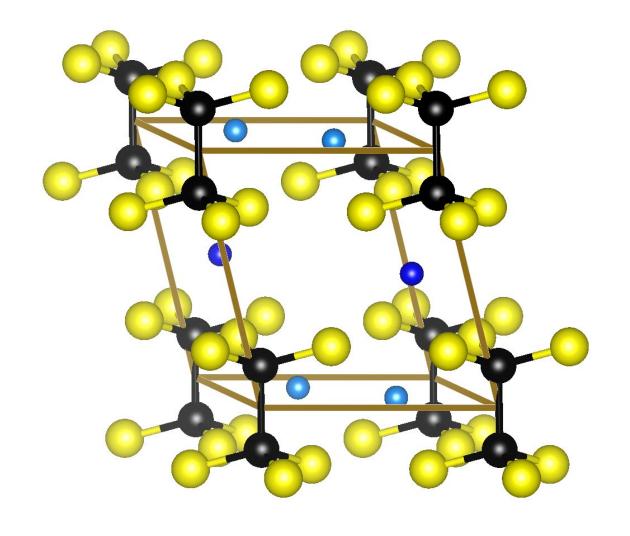
Z. Anorg. Allg. Chem. 2014, 640, (5), 689–692

Synthesis and Structural Characterization of the Alkali Thiophosphates Na₂P₂S₆, Na₄P₂S₆, K₄P₂S₆, and Rb₄P₂S₆

Alexander Kuhn,[a] Roland Eger,[a] Jürgen Nuss,[a] and Bettina V. Lotsch*[a,b]

 $Na_4P_2S_6$ found to crystallize in a base centered monoclinic structure with space group C2/m (#12); result verified by Zachary Hood and colleagues who also found the material to have appreciable Na ion conductivity.

> Experimental story − Na₄P₂S₆ continued --



Primitive cell of the **Kuhn structure**

Space group *C2/m*

Na 🔘 🌑

- Computational challenges
 - > Can computer modeling explain the structural stability patterns found by experiment?
 - What about possible new related materials?
 - What does computer modeling say about the mechanisms of ionic conductivity?

11/6/2019 Duke University 20

> Simulation of structural stability patterns

Computational details –

Formalism: Born-Oppenheimer approximation + Density functional theory (Hohenberg and Kohn, *Phys. Rev.* 136 B864 (1964); Kohn and Sham, *Phys. Rev.* 140 A1133 (1965))

Method: Projector Augmented Wave (P. Blöchl, *Phys. Rev. B* 50 17953 (1994)) Exchange correlation function: PBEsol (Perdew et al., *PRL* 100 136406 (2008))

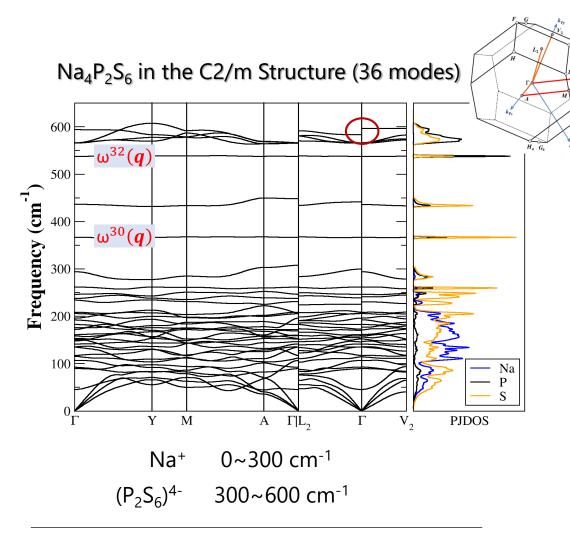
Codes used for calculations

Function	Code	Website		
Generate atomic datasets	ATOMPAW	http://pwpaw.wfu.edu		
DFT; optimize structure; vibrational analysis	PWscf abinit	http://www.quantum-espresso.org http://www.abinit.org		
Structural visualization	XCrySDen VESTA	http://www.xcrysden.org http://jp-minerals.org/vesta/en/		

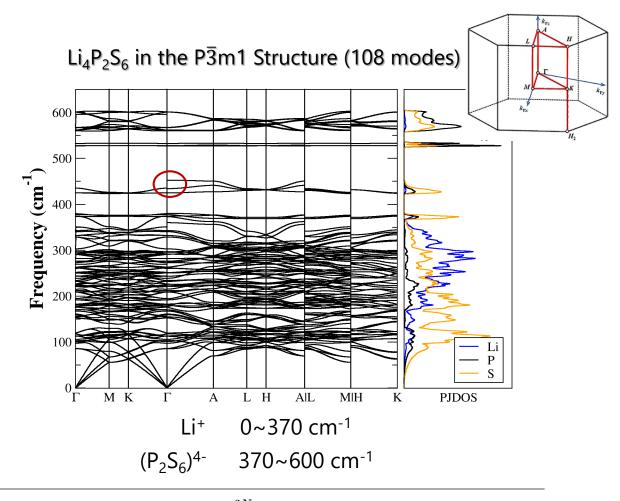
> Simulation of structural stability patterns -- continued WAKE FOREST

Stability approximated in terms of the Helmholtz free energy

as a function of temperature T:


$$F(T) = F_{SL}(T) + F_{vib}(T) \approx U_{SL} + F_{vib}(T)$$
Static lattice approx Harmonic phonon approx energy from DFT

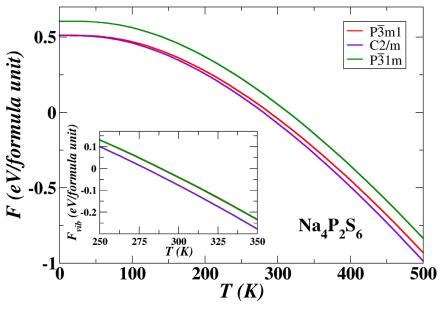
$$F_{vib}(T) = k_B T \int_0^\infty d\omega \ln \left(2 \sinh \left(\frac{\hbar \omega}{2k_B T} \right) \right) g(\omega)$$
Phonon DOS


11/6/2019

Simulation of structural stability patterns -- continued

¹Suggested path: Hinuma et al., *Comp. Mat. Sci.* **128**, 140-184 (2017) ²Li et al., *J. Phys. Condens. Matter,* **32**, 055402 (2020)

PJDOS:
$$g^a(\omega)\equivrac{V}{(2\pi)^3}\int d^3q\sum_{
u=1}^{3N}(\delta(\omega-\omega_
u({f q}))W_a^
u({f q}))$$


Duke University

Discontinuous branches at Γ: coupling between photon and photon²

Simulation of structural stability patterns -- continued

Helmholtz free energy: $F = U_{SL} + F_{vib}$

 U_{SL} : P3m1 = C2/m < P31m

 F_{vib} : C2/m < P $\bar{3}$ m1 = P $\bar{3}$ 1m

 \rightarrow F_{lowest} : C2/m (expt.^{1,2})

 U_{SI} : P3m1 < P31m < C2/m

 F_{vib} : C2/m < P $\bar{3}$ m1 = P $\bar{3}$ 1m

 \rightarrow F_{lowest} : P $\overline{3}$ m1 (expt.³)

¹Kuhn et al., *Z. Anorg. Allg. Chem.* **640**, 689-692 (2014)

²Hood et al., J. Solid State Ionics **284**, 61 (2016)

³Neuberger et al., *Dalton Trans.* **47**, 11691-11695 (2018)

Simulation of structural stability patterns -- continued

Summary of simulation energies

Na ₄ P ₂ S ₆	$\Delta U_{SL}(eV)$	F _{vib} (300K)(eV)	<i>F(300K)</i> (eV)	
Neuberger structure (P3m1)	0.00	-0.04	-0.04	
Kuhn structure (C2/m)	0.00	-0.08	-0.08	
Simple hex structure ($\overline{P31m}$)	0.09	-0.04	0.05	
Li ₄ P ₂ S ₆	$\Delta U_{SL}(eV)$	F _{vib} (300K)(eV)	<i>F(300K)</i> (eV)	
Neuberger structure (P3m1)	0.00	0.19	0.19	
Kuhn structure (C2/m)	0.31	0.12	0.43	
Simple hex structure ($P\overline{3}1m$)	0.04	0.20	0.24	

Energies given in units of eV/formula unit with zero set at the static lattice energy for the Neuberger structure.

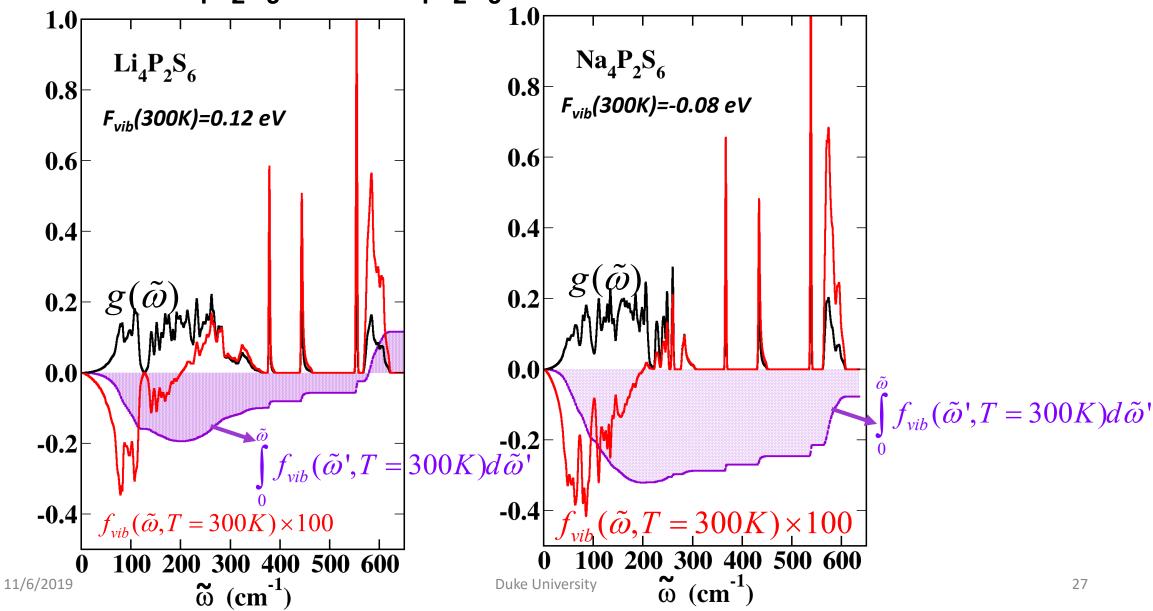
Some details of the vibrational stabilization

Vibrational Helmholtz free energy expression:

$$F_{vib}(T) = k_B T \int_0^\infty d\omega \ln \left(2 \sinh \left(\frac{\hbar \omega}{2k_B T} \right) \right) g(\omega)$$

In practice, it is convenient to express frequencies in wavenumbers:

$$\tilde{\omega} = \frac{\omega}{2\pi c} \text{ (cm}^{-1}) \text{ with } F_{vib}(T) = \int_{0}^{\infty} d\tilde{\omega} f_{vib}(\tilde{\omega}, T)$$


where the weighted phonon DOS factor is

$$f_{vib}(\tilde{\omega}, T) \equiv k_B T \ln \left(2 \sinh \left(\frac{hc\tilde{\omega}}{2k_B T} \right) \right) g(\tilde{\omega})$$

> Some details of the vibrational stabilization at

T=300K for Li₄P₂S₆ and Na₄P₂S₆ in C2/m structure

What about possible new related materials?

Consider the possible alloy $Li_2Na_2P_2S_6$ in the C2/m structure

Replace the (a) g-type or (b) h-type Na ions in the monoclinic Na₄P₂S₆ with Li ions

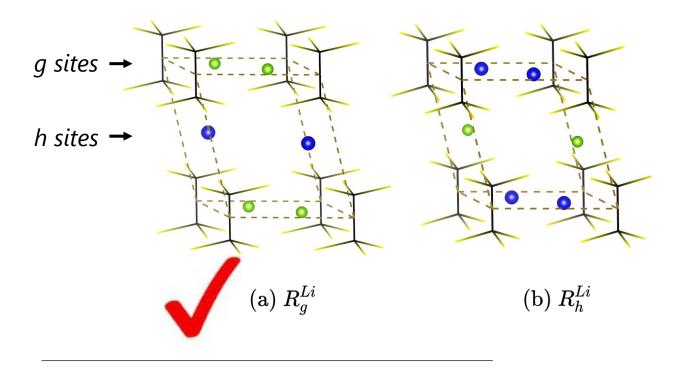
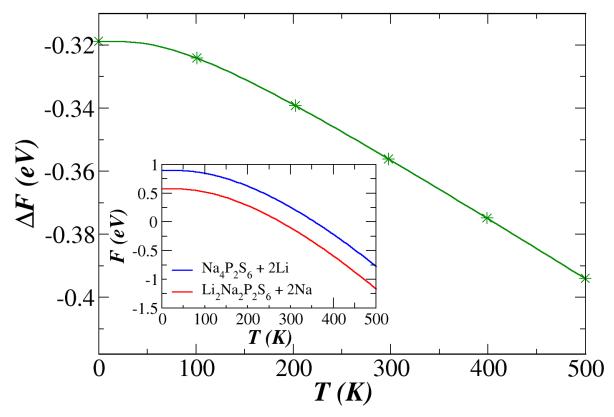


TABLE: Comparison of the optimized lattice parameters for $Li_2Na_2P_2S_6$ in the R_a^{Li} and R_h^{Li} structures. Also listed is the static lattice energy differences U_{SL} referenced to the energy of the R_h^{Li} structure in units of eV/formula unit.

		R_g^{Li}	R_h^{Li}
Primitive cell:	a = b (Å)	6.18	6.46
	c (Å)	7.50	7.01
	$\alpha = \theta$ (deg)	97.77	97.88
	γ (deg)	119.21	118.43
Conventional	a_c (Å)	6.26	6.61
cell:	b_c (Å)	10.67	11.10
	c_c (Å)	7.50	7.01
	$\boldsymbol{\mathcal{B}}_{c}$ (deg)	105.50	105.54
	ΔU_{SL} (eV/FU)	-0.16	0.00

What about the possible new related material − Li₂Na₂P₂S₆ -- is it stable/useful?

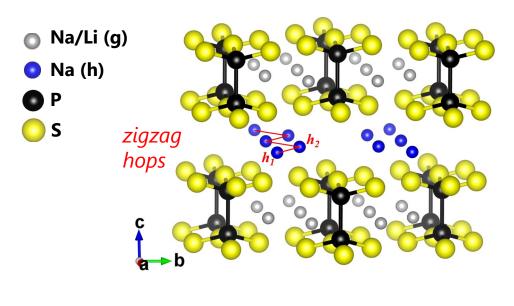


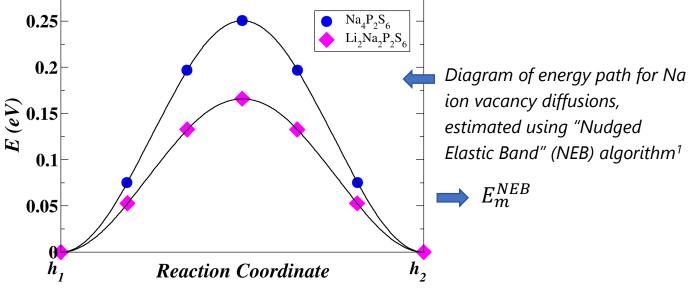
The possible reaction pathway:

$$egin{align*} {
m Na_4P_2S_6+2Li} &
ightarrow {
m Li_2Na_2P_2S_6+2Na} \ \Delta F(T) = \Delta U_{SL} + \Delta F_{vib}(T) + \Delta F_{
m elec}^{
m metal}(T) \ &
ightarrow {
m trivial \, contribution} \ \Delta = \Delta^{Products} - \Delta^{Reactants} \ \end{array}$$

Energy changes at T = 300 K in eV:

$$\Delta U_{SL} = -0.29$$
 $\Delta F = -0.35$ $\Delta F_{vib} = -0.06$




Negative energy implies that the product $\text{Li}_2\text{Na}_2\text{P}_2\text{S}_6$ +2Na is stable with respect to the reactants $\text{Na}_4\text{P}_2\text{S}_6$ +2Li.

Computer modeling of mechanisms of ionic conductivity; comparing Na₄P₂S₆ and Li₂Na₂P₂S₆ ---

Activation energy:

$$E_a^{cal} = E_m^{NEB} + \frac{1}{2}E_f$$

Conductivity:

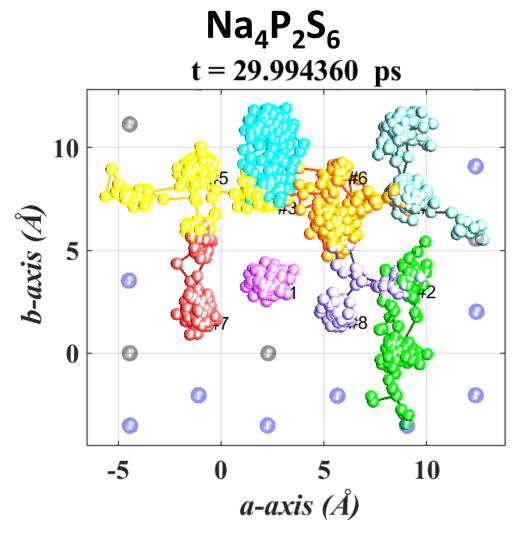
$$\sigma \cdot T = K e^{-E_a^{exp}/k_BT}$$

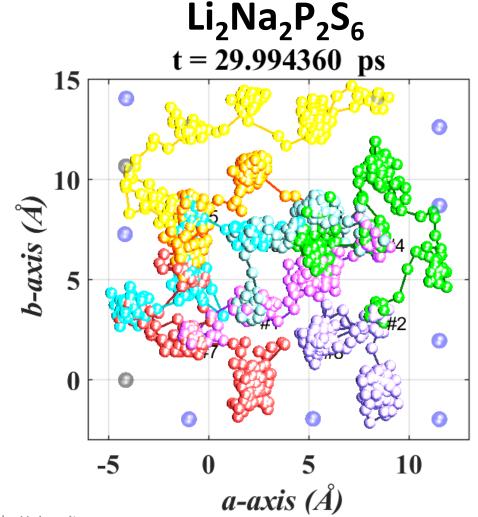
Summary of vacancy diffusion results

Material	Functional	Step	Distance	E_m^{cal}	E_f^{cal}	E_a^{cal}	E_a^{exp}
$Na_4P_2S_6$	PBEsol GGA LDA	$h_1 \rightarrow h_2$	3.67	0.25	0.18	0.34	0.30
	LDA	$h_1 \rightarrow h_2$	3.59	0.30	0.24	0.42	0.59
$Li_2Na_2P_2S_6$	PBEsol GGA	$h_1 \rightarrow h_2$	3.44	0.16	0.13	0.23	_

The distance in units of Å, and all energies are given in eV units

¹Henkelman et al., *J. Chem. Phys.* **113**, 9901-9904 (2000)


²Rush et al., *Solid State Phys.* **286**, 45-50 (2016)


³Hood et al., Manuscript in preparation.

Computer modeling of mechanisms of ionic conductivity; comparing Na₄P₂S₆ and Li₂Na₂P₂S₆ ---

MD simulations at <T>=1000K; Na ion motion in h planes --

> Outlook

- □ DFT with PBEsol+harmonic phonon simulations agree with the experimental structures of $Na_4P_2S_6$ (space group C2/m found by Kuhn and Hood) and $Li_4P_2S_6$ (space group $P\overline{3}m1$, close to that found by Neuberger).
- □ For $Na_4P_2S_6$ find Na+ migration to take place in planes with the h-sites via a vacancy mechanism, involving interstitial d-sites. Both simulations and experiment suggest that $Na_4P_2S_6$ may be a viable solid electrolyte.
- □ Simulations predict $Li_2Na_2P_2S_6$ to crystallize with the *C2/m* structure and to be stable relative to $Na_4P_2S_6+2Li-2Na$. The mixed alkali electrolyte is predicted to substantially enhance Na ion conductivity.
- □ In addition to experimental verification (or otherwise) of the predictions for Li₂Na₂P₂S₆, further MD simulations for both Na₄P₂S₆ and Li₂Na₂P₂S₆ will help us better understand Na ion conductivity mechanisms.

11/6/2019 Duke University 32