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Li4P2S6/ Na4P2S6
Why--

What--

• Search for ideal solid electrolyte materials for all-solid 
state batteries

• Li4P2S6 reported  by Mercier et al., J. Solid State Chem. 43,
151-164 (1982); hexagonal structure with disorder on the 
P sites

• Li4P2S6 frequently identified as unintended  constituent of 
solid electrolyte preparations;  relatively stable in air

• Na4P2S6 recently report by Kuhn et al., ZAAC 640, 689-692 
(2014); related ordered structure 

Experimental results for Li4P2S6 and computation results for 
Li4P2S6 and Na4P2S6:
• Structural analysis
• Transport properties
• Interfaces with Li or Na metal
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Synthesis:

6750 9002 2 5 4 2C
2 S + Li   Li P S  + SP S o



Sulfur removed by treatment with solvent; powder sample 
prepared for electrochemical applications using ball milling.   

Scanning Electron Micrograph of prepared sample:
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Computational methods
• Density functional theory with LDA
• PAW formalism using datasets generated with ATOMPAW code 

(Holzwarth et al. CPC 135, 329 (2001)) http://pwpaw.wfu.edu
• Electronic structure calculations performed using QUANTUM 

ESPRESSO and ABINIT codes. (Giannozzi et al. JPCM 21, 394402 
(2009); http://www.quantum-espresso.org, Gonze et al., CPC 
180, 2582 (2009)); http://www.abinit.org

• Plane wave expansion for wave functions with
• Brillouin zone integration mesh of  0.003 bohr-3

• Ion migration energies estimated with Nudged Elastic Band 
(NEB) method. (Hinkleman et al. JCP 113, 9901 & 9978 (2000))

• Visualization software:  Xcrysden, VESTA, and CrystalMaker
• X-ray powder diffraction simulated using Mercury
• Neutron powder diffraction simulated using GSAS

2
64 Ry k G
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Crystal structure of Li4P2S6:   Space Group    P63/mcm  (#193)
Projection on to hexagonal plane:
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Crystal structure of Li4P2S6 :   Space Group    P63/mcm  (#193)
Li4P2S6 units:
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Crystal structure:   Space Group    P63/mcm  (#193)
Disorder in P-P placements:

S

P

Li
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Structural variation can be mapped on to a two-dimensional 
hexagonal lattice with each P configuration  taking P    or P     
settings; Li and S configurations fixed

S

P

Li
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Examples:

Structure “b”

Structure “c”

Structure “d” DE = 0

DE = 0

DE = 0.03 eV

100%   P

50%   P
50%   P

50%   P
50%   P

S

P

Li

31P m

Pnnm

Pnma

Two model 
configurations 
of disordered 
ground state 
structure
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Temperature      dependence of X-ray powder diffraction
in
^
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Comparison of 15 K
X-ray data with simulations 

Note: simulations 
scaled by 102% 
to compensate 
for systematic 
LDA error.

Extra peaks

Simulations consistent 
with incoherent average 
over all P and P            
configurations
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X-ray spectrum Neutron spectrum

In terms of diffracting plane spacing:

/ (2sin )d  
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a (Å) c (Å) zP zS

Exp. 293K  (X-ray)* 6.070 6.557 0.1715 0.3237

Exp. 300K  (X-ray)  6.075 6.597 0.172 0.324

Exp. 300K (neutron) 6.075 6.595 0.173 0.326

Exp.   15K (X-ray) 6.051 6.548 0.172 0.324

Exp.  15K (neutron) 6.055 6.553 0.172 0.326

Calc. structure “b” 6.07 6.50 0.18 0.33

Calc. structure “c” 6.06 6.54 0.17 0.33

Calc. structure “d” 6.06 6.54 0.17 0.33

Structural parameters

*Mercier et al., J. Solid State Chem. 43, 151 (1982)

Hood 
et al.**

with 
102% 
LDA 
corr.

**Hood et al., submitted to SSI (2015)
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Stability: Li4P2S6 is much less reactive than other 
lithium thio-phosphates, but it decomposes in air, 
especially at higher temperature

Decomposition 
products:
P2O5

Li4P2O7

Li2SO4
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Ionic conductivity and Activation Energy

2.38 x 10-7 S/cm at 25˚C and 2.33 x 10-6 S/cm at 100˚C 
Li4P2S6 pressed pellets with blocking (Al/C) electrodes

Li/ Li4P2S6 /Li cells could not be cycled
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Simulations of ion mobility using Nudged Elastic Band Model

Vacancy 
mechanism:
DE>0.6 eV

Interstitial 
mechanism:
DE>0.1 eV

S

P

Li

Possible 
interstitial sites
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Models of Li4P2S6/Li interfaces -- Surface parallel to P-P bonds:

Surface with vacuum Surface with lithium

S

P

Li
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Models of Li4P2S6/Li interfaces -- Surface perpendicular to P-P bonds:

Surface with vacuum Surface with lithium

S

P

Li

Reactivity of Li/Li4P2S6 interface models 
consistent with experimental observation that 
Li/ Li4P2S6 /Li cells could not be cycled
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Preliminary results for Na4P2S6:
Kuhn et al., ZAAC 640, 689-692 (2014) synthesized single 
crystals with a monoclinc structure having space group C2/m
with similarities to the trigonal structure with           space group31P m

Structural comparison – c-axis projection 

31P m 2 /C m

Na
P
S

a

a x c
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Structural comparison – view including c-axis 

31P m 2 /C m

Na4P2S6
Na
P
S
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31P m 2 /C m

Structural comparison – view including c-axis 

Na4P2S6

Na
P
S

c

a x c
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Preliminary results for Na4P2S6:
Calculated heats of formation (eV per formula unit) 
for Na4P2S6 and Li4P2S6 in 4 structural models

Na4P2S6 Li4P2S6

Kuhn structure -11.47 eV -12.07 eV

Structure “b” -11.47 eV -12.42 eV

Structure “c” -11.56 eV -12.46 eV

Structure “d” -11.56 eV -12.46 eV

Models of 
disordered
Mercier
structure Calculations find the  most stable structure for 

both  Na4P2S6 and Li4P2S6 to be the disordered 
Mercier structure, suggesting that the Kuhn 
structure is meta-stable.
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Comparison of vacancy migration of Na4P2S6 and Li4P2S6

Na4P2S6

31P m 2 /C m

Na
P
S
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31P m 2 /C m

Minimum ion vacancy migration energies

Na4P2S6 0.3 eV 0.3 eV

Li4P2S6 0.5 eV 0.1 eV

31P m 2 /C m

Na
P
S

25
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Na
P
S

Model of  Na4P2S6/Na interface in Kuhn structure

meta-stable 
ideal interface
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Conclusions:
 Li4P2S6 and Na4P2S6 have interesting structural properties; 

simulations find the  most stable structure for both to be 
the disordered Mercier structure, suggesting that the Kuhn 
structure is meta-stable.

 Experimental structural studies for Li4P2S6 agree with the 
simulations; material is found to be remarkably 
temperature independent and thermally stable relative to 
other thio-phosphates.

 Measurements find Li4P2S6 to have low ionic conductivity; 
simulations suggest that Na4P2S6 may have more favorable 
ionic conductivity.

 Models of ideal Li4P2S6/Li interfaces find broken P—S bonds;
Na4P2S6/Na interfaces in the Kuhn structure may be slightly 
more stable


