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lonic conductivity from the mindset of atomistic modeling:
For particles, i each having charge ¢,, in a volume Q,

. . . ] &
4 the current as a function of time ¢ density 1s J(¢) = —Z q.v.(1)
“ V, Q i=1
v, / . dr. (t
s / where velocity 1s v, (7) = 10
r /I III i dt
II,:/ N Y .
0 -7 R Green-Kubo formula for evaluating
/ ionic conductivity
Q 0.0)
O = 3k T dt <J(t) . J(O)>conﬁgurations
BE_0
Bo\’ﬂ—ma“V \Te
ta“‘. mpel'
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Some background for the development , _ € dt(J(t) J(O)>
of the Green-Kubo formula 3k,T <

1931 — Lars Onsager — Phys Rev 37, 405 (1931) & 38, 2265 (1931) — “Reciprocal relations in
irreversible processes” — Showed how macroscopic, linearized hydrodynamic equation are
affected by atomic level dynamics of the system at equilibrium; also called the fluctuation-
dissipation theorem.

1954 — M. S. Green — J. Chem. Phys. 22, 398 (1954)

1957 — R. Kubo - J. Phys. Soc. Jpn. 12, 570 (1957) — “Statistical-mechanical theory of
irreversible process”

configurations

Mathematically equivalent formulation in terms of polarization density:
: L ( 1 &
Performing time integral: P(¢) — P(0) = j dr' J(t") = 52% (1}- (t)-r, (O))
0 i=1

. Q
Alternative Green-Kubo form: ¢ =—— lim <‘P(tmax) P(O)‘ >

6k Ttmax_)oo t

configurations
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lonic conductivity from the mindset of atomistic modeling (further simplification):
In the previous formulation all ions are included in the evaluation however, in most
cases, 1t 1s reasonable to focus on the diffusing particles, i € D with g, = ¢q,,,
defining for eachie D Ar, (1) =r,(¢)—r.(2),

where r,. (¢) represents the center of charge of the "framework" or non-diffusing
part of the electrolyte at each time #. Making the assumption that the diffusing

particles move independently of each other, 1t 1s convenient to define a
"mean squared displacement": MSD(?) = Z ‘Arl. (1) —Ar, (O)‘z.

ieD
This leads to an approximate form of Green-Kubo 1onic conductivity:

2
3 qp 1
o =0, = Iim MSD(t
MSD tr 6Qk T tmax 500 Z' < ( maX)>
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Some details for the full and tracer Green-Kubo formulas

2
Q q, 1
o, = lim MSD(¢ .
°- 6k T thI)loo t <|P(tmaX) P(O)| >conﬁgurati0ns " 6Qk T toax > t < ( e )>conﬁgurat10ns
. . - .
Performing configuration average <J (t)>Con feurations 10T €ach time 7 — 7,

[N T N A O O O O O MD evaluation times
t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15 t16

*
|_t_'_," = Multiple instances

—— (~ 3x10%) of time interval ¢
e averaged to perform

i II j <>configurations
t
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Basic evaluation tool — numerical evaluation of classical molecular dynamics
equations of particle motions --

For a given particle interaction potential describing the system: @ ({r ; (t)})

For each particle i of mass m., experiencing a force F. (¢), numerically evaluate

d’v(1) _E(@) _ —V,-CD({I‘,- (t)})

dt m. m.

l 1

Typical numerical integration scheme for time sequence ¢ =0,0¢,20t,30t,40t,50¢t.....

(1) = 2r (6= 1) -1 (1 - 260+~ (50 L o (50)'

\ m, ’

Velocity-Verlet algorithm
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Some “first-principles” molecular dynamics (FPMD) implementations using the
Born-Oppenheimer approximation and density functional theory --

Energy &

O ({r,(0}) = B2 s ({1, 0]
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High-throughput computational screening for ComPUted Otr to _
solid-state Li-ion conductors¥ screen for materials

Leonid Kahle, "= * Aris Marcolongo "> t and Nicola Marzari Wlth hlgh 1oNnic

We present a computational screening of experimental structural repositories for fast Li-ion conductors, cond UCtIVIty'
with the goal of finding new candidate materials for application as solid-state electrolytes in next-

generation batteries. We start from ~ 1400 unigue Li-containing materials, of which ~900 are insulators

at the level of density-functional theory. For those, we calculate the diffusion coefficient in a highly

automated fashion, using extensive molecular dynamics simulations on a potential energy surface (the

recently published pinball model) fitted on first-principles forces. The ~130 most promising candidates

are studied with full first-principles molecular dynamics, including an estimate of the activation barrier

for the most diffusive structures. The results of the first-principles simulations of the candidate solid-

state electrolytes found are discussed in detail.
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Some past results from our own group - typically finding o, to overestimate
the experimental conductivity

Li,SnS,

4 | 1

38 O Cale: LiSnS,"| |
=~ 3 & Cale: Li,SnS, | |
g 2 O Exp: Ref. (A)
% 1F ® Exp: Ref. (B) |7
b‘: 1= Exp: Ref. (C)
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< 2+
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Some details of computational methods —

Thanks to the Born-Oppenheimer approximation, the positions of the atomic
nuclei can be treated with classical mechanics, while for each atomic
configuration, the electronic ground state energies and forces are determined
from density functional theory using the projector augmented wave formalism
(PAW) of Blochl (1994) bor: 10.1103/physreve.50.17953 and the PBESOL exchange-
correlation functional of Perdew (2008) po: 10.1103/PhysRevLett.100.136406 Density
functional calculations were performed with the open source Quantum

Espresso package. .\
P P 9 f /) URNTUMESPRESSD

Typical first principles molecular dynamics runs represent simulation
times of ~ 100 ps or less.
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What could be the problem?

Simulations performed at
High T to increase the number
of events; extrapolation to
experimental temperatures
may be inaccurate.

Li,B,0,,Cl
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Inspiration -- araday Discussions

» ROYAL SOCIETY
Citte this: Faraday Discuss., 2025, 255, 411 -«

OF CHEMISTRY

Tracking Li atoms in real-time with ultra-
fast NMR simulationsT

Angela F. Harper, 2 *@ Tabea Huss, 2@ Simone S. Kécher
and Christoph Scheurer®
Used a machine-learning methodology to simulate solid state NMR detection

of ionic conductivity in Li;PS, near ROOM TEMPERATURE for micro-
seconds!!!!

=>» Motivated the present work using machine-learning at lower temperatures
to study the full and approximate Green-Kubo equations for various solid

lectrolytes.
Y oo 248th ECS Meeting -
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Process for using machine learning to expand capabilities of “first
principles” conductivity simulations

Prepare data Perform training Run several long
for training and validation MD simulations

Evaluate ionic

Allegro
g conductivity

f @uunrﬂu MESPRESSD deployed
model

~5000 datasets ' '

Choose Allegro Run long MD simulations
for large simulation cells

LA

For each material,

perform several FPMD “hyperparameters” .
simulations at various at various temperatures
temperatures

248th ECS Meeting 14
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Some details of the Allegro software package

nature communications ] ]

+ major update in Apr. 2025
Article https://doi.org/10.1038/s541467-023-36329-y W i t h C h u i n We i Ta n a n d
Learning local equivariant representations others

for large-scale atomistic dynamics

E
1
Received: 16 June 2022 Albert Musaelian'?, Simon Batzner ® '3 , Anders Johansson ®", Lixin Sun',
Cameron J. Owen®", Mordechai Kornbluth®2 & Boris Kozinsky ® 2

Accepted: 23 January 2023

Allegro achieves efficiency without loss of accuracy by focusing on
calculating pair energies and forces within a cut off radius R,

N

1 @Al ({rf}) = Z(SZ,- E +u, ) i =site index, Z, = atom type

> I \ i=1
\ L 2. where E, = Z Sz,.szl-j s, ,S,, =scale factors Hy = shift

i i“j
J forr; <R,
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More details of the Allegro software package

The Allegro model 1s determined by optimizing a loss function .£ based on the difference

between model minus first principles potential energies and forces for each training data point d':

L=1 Z( @ /e — 5”) +A Z(‘V ONRAEYS CDDFT‘ ) where A,., 4. are chosen scale factors.

The loss function is optimized using stochastic optimization of the "learned" weights {W*}

chﬂegm({rj}):cpA“egm({W“},{rj}):ﬁ(szilsi+uzl.) E= 2. s,k

i=1 j for n <R,
The "learned" weights {W*} appear in the £, terms as linear coefficients which multiply

linear combinations of radial basis functions and spherical hamonic functions:

E, = A({Wi, 1B, {7, G
(Here the A ({Wb?m } : {Bb (7; )} : {Ylm (r, )}) is a complicated nonlinear function of the weights {Wb?‘m } :
radial basis functions {Bb (rl.j)} , and spherical harmonic functions {Ylm (f'l.].)}.

Typically, the number of "learned weights" {W*} is 10* —10°.
10/15/2025 248th ECS Meeting 16



Form of radial basis functions B,(r;) used in Allegro
b=8
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Model system — solid electrolyte composed of lithium phosphate and silicate
alloys — specifically (Li;PO,), 75(Li;Si0,4), ,5 as inspired by --

JAC'S

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Structural and Mechanistic Insights into Fast Lithium-lon Conduction

in Li,SiO,—Li;PO, Solid Electrolytes

Yue Deng,mt Christopher Eames,* Jean-Noél Chotard,” Fabien Lalére,” Vincent Seznec,’ Steffen Emge,§

Oliver Pecher,® Clare P. Grey,§ Christian M:.-lsque]jen.]E and M. Saiful Islam**

10/15/2025

ABSTRACT: Solid electrolytes that are chemically stable and
have a high ionic conductivity would dramatically enhance the
safety and operating lifespan of rechargeable lithium batteries.
Here, we apply a multi-technique approach to the Li-ion
conducting system (1—z)Li,SiO4—(z)Li;PO, with the aim of
developing a solid electrolyte with enhanced ionic con-
ductivity. Previously unidentified superstructure and immisci-
bility features in high-purity samples are characterized by X-ray
and neutron diffraction across a range of compositions (z =
0.0—1.0). Ionic conductivities from AC impedance measure-
ments and large-scale molecular dynamics (MD) simulations
are in good agreement, showing very low values in the parent

pubs.acs.org/JACS

DOl 10.1021//jacs.5b04444
J. Am. Chem. Soc. 2015, 137, 91369145

phases (Li,SiO4 and Li;PO,) but orders of magnitude higher conductivities (10~ S/cm at 573 K) in the mixed compositions.
The MD simulations reveal new mechanistic insights into the mixed Si/P compositions in which Li-ion conduction occurs
through 3D pathways and a cooperative interstitial mechanism; such correlated motion is a key factor in promoting high ionic
conductivity. Solid-state °Li, "Li, and *'P NMR experiments reveal enhanced local Li-ion dynamics and atomic disorder in the
solid solutions, which are correlated to the ionic diffusivity. These unique insights will be valuable in developing strategies to
optimize the ionic conductivity in this system and to identify next-generation solid electrolytes.

248th ECS Meeting
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Structure 2

Structure 1
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intervals of 0.3 ps
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Visualization of L

Structure 2

Structure 1
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Results for two structures and
various choices of Allegro “hyperparameters”

Name Structure # Weights Status

Small Struct1 ~24,500 Caomunletec

Small Struct2 ~24,500 AMMPS failed}
Medium Struct1 ~91,100 OTITPIEte
Medium Struct2 ~91,100 Completed

10/15/2025

248th ECS Meeting
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o, results, comparing Struct1 & Struct2 with medium Allegro
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Note that these results at 600K are in rough agreement with those of Deng and coworkers.
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Struct1 with medium Allegro hyperparameters using 3 velocity seeds

(lines) and their average (dashes), compari

ng o, and c
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T (K)

LAMMPS temperatures (averaged over 3 seeds) for Medium set
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Surprise failure of Allegro
“small” deploy set for
Struct2 during long
LAMMPS MD simulation,
although Allegro training
and validation process
indicated good
convergence and small
training and validation
errors.

10/15/2025
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Outlook

Successes
d Used Allegro software to study 2 structures in the (Li;PO,);,(Si,PO,)4,
system of electrolytes, speeding up the efficiency of calculating o;, by 10
times, thanks also to LAMMPS MD software.
 The Allegro-LAMMPS combination allows for long atomistic simulations
to be performed at lower average temperatures.
1 Allegro representations of training and validation data seems to be
relatively insensitive to reasonable hyperparameter choices.
Needs further work
1 Need to avoid the surprise failures.
U While there are clear improvements in calculating the tracer conductivity,
there is yet no improvement in calculating the full conductivity which is a
long standing issue with MD simulations.

10/15/2025 248th ECS Meeting 27



Why we might want to calculate the full ionic conductivity —
1. To help discover correlated mechanisms for ionic conductivity and
reliably compute the Haven ratio.
2. To meet the challenges of the numerical instability of long MD

simulations.
292 t

1 A
ll\ _
e — amd
280 s fteEl
o . - t(ps) >
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