Computational Investigation of Li Boracite Li₄B₇O₁₂Cl and Related Materials as Solid Electrolytes

Yan Li, Cory Lynch, Natalie A. W. Holzwarth

Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA

240th ECS Meeting 2021 Session A03 - Solid State Batteries 1

Mineral boracites $\mathbf{M}_{3}\mathbf{B}_{7}\mathbf{O}_{13}\mathbf{X}$, where M = Mg, Cr, Mn, Fe, Co, Ni, Zn or Cd, and X = Cl, Br or I Li-containing boracites $\mathbf{Li}_{4+x}\mathbf{B}_{7}\mathbf{O}_{12+x/2}\mathbf{X}$, where $0 \le x \le 1$, and X = Cl, Br or I

10/10/2021

Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT) with the modified Perdew-Burke-Ernzerhof generalized gradient approximation (PBEsol GGA)

Perdew et al., PRL 100, 136406 (2008)

□ The projector augmented wave (PAW) formalism with atomic datasets generated by **ATOMPAW** code available at <u>http://pwpaw.wfu.edu</u>

□ First principles electronic-structure calculations and materials modeling

https://www.abinit.org/

□ Structural visualization, symmetry identification, X-ray patterns

https://jp-minerals.org/vesta/

http://www.xcrysden.org/

FINDSYM Version 7.1.2. June 2021

version 7.1.2, June 2021

https://stokes.byu.edu/iso/findsym.php

https://www.ccdc.cam.ac.uk/solution s/csd-core/components/mercury/

10/10/2021

Reported structures of Li₄B₇O₁₂Cl from 1977*

Ideal cubic model 8 formula units/cell

Three disordered phases

*Jeitschko et al., Acta Cryst. B33, 2767-2775 (1977)

- Above 348 K
 γ phase (F43c, No. 219)

 Li(24c): 93.7% occupied
 Li(32e): 31.6% occupied
- **310 348 K**β phase (P43c, No. 218)Ideal F43c modelLi(24c): 96.7% occupiedLi(32e): 27.8% occupied
- Room T
 α phase (Exp. R3, No. 146)

 Ideal F43c model
 Li(24c): 100% occupied

 Li(32e): 25% occupied
 Li(32e): 25% occupied
- * The real space groups of the α and β phases are subgroups of F43c.
- ** The atomic positions for both α and β phases are not known in experiment

Find the ground state structure for α -Li₄B₇O₁₂Cl

WAKE FOREST

UNIVERSITY

Cubic F $\overline{4}$ 3c model of the α phase

Li(24c): 100% occupied Li(32e): 25% occupied Perform geometry optimizations for 28 unique configurations in the primitive cell setting

The calculation finds four identical lowest-energy configurations with the **rhombohedral R3c (No. 161)** symmetry

WAKE FOREST α -Li₄B₇O₁₂Cl in rhombohedral R3c structure

Face-centered primitive cell 2 formula units

$\mathbf{a}_{\mathrm{p}} = (\mathbf{a_c} + \mathbf{b_c})/2 = a_p(\hat{\mathbf{x}}(\lambda_p + \mu_p) + \hat{\mathbf{y}}(\lambda_p + \mu_p) + \hat{\mathbf{z}}(\lambda_p - 2\mu_p))$
$\mathbf{b_p} = (\mathbf{b_c} + \mathbf{c_c})/2 = a_p(\hat{\mathbf{x}}(\lambda_p - 2\mu_p) + \hat{\mathbf{y}}(\lambda_p + \mu_p) + \hat{\mathbf{z}}(\lambda_p + \mu_p))$
$\mathbf{c_p} = (\mathbf{a_c} + \mathbf{c_c})/2 = a_p(\hat{\mathbf{x}}(\lambda_p + \mu_p) + \hat{\mathbf{y}}(\lambda_p - 2\mu_p) + \hat{\mathbf{z}}(\lambda_p + \mu_p))$

$$egin{aligned} \lambda_p \equiv rac{\sqrt{1+2\cos heta_p}}{3} ext{ and } \mu_p \equiv rac{\sqrt{1-\cos heta_p}}{3} ext{ and } a_p = rac{a_c}{\sqrt{3-2\cos(heta_p)}} \ \cos(heta_p) = rac{1+3\cos(heta_c)}{2(1+\cos(heta_c))} \end{aligned}$$

α -Li₄B₇O₁₂Cl in rhombohedral R3c structure

Conventional cell model

Lattice parameters and Li ion fractional coordinates for the R3c structure of α -Li₄B₇O₁₂Cl, comparing calculated results with the experimental measurements.

Li ₄ B ₇ O ₁₂ Cl	$\mathbf{a} = \mathbf{b} = \mathbf{c} (\mathbf{A})$	$\alpha = \beta = \gamma$ (deg)
Cal. R3c	12.137	90.108
Exp.* R3	12.141	90.084
Exp.* F43c model	12.141	90.000

Cal. R3c			Exp. F43c model				
Atom	Wyck	f(x, y, z) (conv.)	Occ.	Atom	Wyck	f(x, y, z)	Occ.
Li(1)	4x6 b	(0.030, 0.245, 0.245)	1.00	Li(1)	24 c	(0.000, 0.250, 0.250)	1.00
Li(2)	4x2 a	(0.865, 0.865, 0.865)	1.00	Li(2)	32 e	(0.871, 0.871, 0.871)	0.25
Vac. Li	4x6 b	(0.633, 0.635, 0.873)	0.00				

Native Li vacancies

*Experimental data taken from Jeitschko et al., Acta Cryst. B. 33, 2767-2775 (1977)

10/10/2021

Phase stability of α -Li₄B₇O₁₂Cl

VAKE FOREST

UNIVERSITY

Li₂O-B₂O₃-LiCl phase diagram at 0 K and 0 atm

Reaction energy: $\Delta U_{SL} = U_{SL} - \sum x_i U_{SL}^i$ Where U_{SL} is the total static energy per formula unit of a specific compound. x_i with $i = \text{Li}_2\text{O}$, B_2O_3 , and LiCl represents the compositional ratio of each reference phase for which the total static energy per formula unit is denoted by U_{SL}^i .

Phonon dispersion curves and projected density states of $Li_4B_7O_{12}CI$ with frequencies ranging from 0 ~ 1440 cm⁻¹.

Brillouin zone diagram: Hinuma et al., *Comp. Mat. Sci.* **128**, 140-184 (2017). Note that the rhombohedral lattice is described by an equivalent hexagonal system.

Nudged Elastic Band (NEB) analysis for α-Li₄B₇O₁₂Cl

 $E_{hb} < E_{ha} < E_{mb}$ mb C b

hb: host b-type site; **ha:** host a-type site**mb:** metastable b-type site (native vacancy)

→ The concerted migration mechanism reduces the energy barrier for Li ion conduction in α -Li₄B₇O₁₂Cl.

NEB: ¹Jónsson et al., *in Classical and Quantum Dynamics in Condensed Phase Simulations*, World Scientific, Singapore (1998) ²Henkelman et al., *J. Chem. Phys.* **113**, 9901-9904 (2000)

Results of molecular dynamic simulations

🗿 Li(6b) 💿 Li(2a) 🜔 Vacant Li(6b)

Model of $Li_4B_7O_{12}Cl$ crystal cell with superposed Li positions of molecular dynamics simulation at $\langle T \rangle = 1162$ K.

*Recall: the three reported forms α (T < 310 K), β (310 K <T < 348 K), γ (T > 348 K) mainly differ in lattice site occupancy.

Results of molecular dynamic simulations

Ref. A: Cales *et al., Solid State Commun.* **24**, 323 (1977) Ref. B: Jeitschko *et al., Acta Cryst.* B. **33**, 2767-2775 (1977) Ref. C: Tan *et al., ACS Appl. Energy Mater.* **2**, 5140 (2019).

Materials	Analysis	Samples	E _a (eV)	σ (T = 300 K, S/cm)
	Cal.	Ideal	0.34	3.83 x 10 ⁻⁴
Li ₄ B ₇ O ₁₂ Cl	Exp: Ref (A)	Polycrystalline	0.53	1.00 x 10 ⁻⁷
	Exp: Ref (B)	Single crystal	0.49	0.98 x 10 ⁻⁷
	Exp: Ref (C)	Polycrystalline	0.14	3.68 x 10 ⁻⁴
Li ₅ B ₇ O ₁₂₅ Cl*	Cal.	Ideal	0.84	6.58 x 10 ⁻¹²
	Exp: Ref (A)	Polycrystalline	1.03	2.14 x 10 ⁻¹⁴

$$\sigma(T)=
ho q^2rac{D_{tr}(T)}{k_BTH_r}~~$$
 with $H_r=1$, $D_{tr}(T)=D_0e^{-E_a^{
m MD}/k_BT}$

*Li₅B₇O_{12.5}Cl has a similar B-O framework with Li₄B₇O₁₂Cl but a different ordering of Li ions.

Ionic substitutions in α -Li₄B₇O₁₂Cl

Li₄B₇O₁₂Cl Original material

Rhombohedral R3c

 $\begin{array}{l} a_{p} = b_{p} = c_{p} = 8.574 \text{ Å} \\ \alpha_{p} = \beta_{p} = \gamma_{p} = 60.124^{\circ} \\ a_{c} = b_{c} = c_{c} = 12.137 \text{ Å} \\ \alpha_{c} = \beta_{c} = \gamma_{c} = 90.108^{\circ} \end{array}$

Li₄Al₃B₄O₁₂Cl Realized in experiment*

Rhombohedral R3c

 $a_{p} = b_{p} = c_{p} = 9.133 \text{ Å}$ $\alpha_{p} = \beta_{p} = \gamma_{p} = 61.194^{\circ}$ $a_{c} = b_{c} = c_{c} = 13.033 \text{ Å}$ $\alpha_{c} = \beta_{c} = \gamma_{c} = 91.022^{\circ}$ *Kajihara *et al., Bull. Chem. Soc. Jpn.* **90**, 1279–1286 (2017) $O \rightarrow S$

Li₄B₇S₁₂Cl Predicted in this work

Rhombohedral R3c $a_p = b_p = c_p = 10.584 \text{ Å}$

 $\alpha_{p} = \beta_{p} = c_{p} = 10.504 \text{ //} \text{ }$ $\alpha_{p} = \beta_{p} = \gamma_{p} = 59.704^{\circ}$ $a_{c} = b_{c} = c_{c} = 14.934 \text{ Å}$ $\alpha_{c} = \beta_{c} = \gamma_{c} = 89.743^{\circ}$

Li₄Al₃B₄S₁₂Cl Predicted in this work

Rhombohedral R3c

 $\begin{array}{l} a_{p} = b_{p} = c_{p} = 11.386 \text{ Å} \\ \alpha_{p} = \beta_{p} = \gamma_{p} = 68.601^{\circ} \\ a_{c} = b_{c} = c_{c} = 15.933 \text{ Å} \\ \alpha_{c} = \beta_{c} = \gamma_{c} = 88.771^{\circ} \end{array}$

Comparison of diffusional properties

NEB energy diagram of concerted migrations

Mean squared displacement (MSD) vs. time interval

Li₄Al₃B₄O₁₂Cl Kajihara *et al., Bull. Chem. Soc. Jpn.* **90**, 1279–1286 (2017)

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{O}_{12}\mathrm{Cl} \rightarrow 1/2\ \mathrm{Li}_4\mathrm{B}_7\mathrm{O}_{12}\mathrm{Cl} + 1/2\ \mathrm{Li}\mathrm{B} + 1/2\ \mathrm{Li}\mathrm{Cl}\mathrm{O}_4 + \mathrm{Li}\mathrm{Al}\mathrm{O}_2 + 2\ \mathrm{Al}\mathrm{O} - 14.29\ \mathrm{eV}$

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{O}_{12}\mathrm{Cl} \rightarrow 1/2\ \mathrm{Li}_4\mathrm{B}_7\mathrm{O}_{12}\mathrm{Cl} + 1/2\ \mathrm{Al}_5\mathrm{BO}_9 + 1/2\ \mathrm{Al}\mathrm{ClO} + \mathrm{Li}_2\mathrm{O} - 0.8\ \mathrm{eV}$

Li₄B₇S₁₂Cl (proposed)

 $\mathrm{Li}_4\mathrm{B}_7\mathrm{S}_{12}\mathrm{Cl} \rightarrow 3~\mathrm{Li} + 7~\mathrm{B} + 12~\mathrm{S} + \mathrm{Li}\mathrm{Cl} - 14.38~\mathrm{eV}$

 $Li_4B_7S_{12}Cl \rightarrow Li_3BS_3 + 3\ B_2S_3 + LiCl + 0.46\ eV$

Li₄Al₃B₄S₁₂Cl (proposed)

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{S}_{12}\mathrm{Cl} \rightarrow 3\ \mathrm{Li} + 3\ \mathrm{Al} + 4\ \mathrm{B} + 12\ \mathrm{S} + \mathrm{Li}\mathrm{Cl} - 18.35\ \mathrm{eV}$

 $\mathrm{Li}_4\mathrm{Al}_3\mathrm{B}_4\mathrm{S}_{12}\mathrm{Cl} \rightarrow 3/2\ \mathrm{Li}_2\mathrm{S} + 3/2\ \mathrm{Al}_2\mathrm{S}_3 + 2\ \mathrm{B}_2\mathrm{S}_3 + \mathrm{Li}\mathrm{Cl} + 0.87\ \mathrm{eV}$

Phonon calculations

- The ground state structure of the room-temperature form of Li₄B₇O₁₂Cl is identified to have rhombohedral R3c symmetry. The phase is estimated to be stable from the analysis of the convex hull approach and of the phonon spectrum.
- □ The NEB calculations indicate that Li ion migration in Li₄B₇O₁₂Cl most likely proceeds via concerted migration mechanisms involving two host sites and one natural vacancy.
- The room-temperature ionic conductivity of Li₄B₇O₁₂Cl, calculated from the MD simulation results, is on the order of 10⁻⁴ S/cm, which is in good agreement with the recent experiment measurement for pure polycrystalline samples.
- □ Consistent with the recent experimental results, our preliminary calculations also find reduced Li ion migration barriers in the partially B-replaced compound Li₄Al₃B₄O₁₂Cl. The studies on predicted compounds Li₄B₇S₁₂Cl and Li₄Al₃B₄S₁₂Cl also suggest improved Li ion conducting performance compared with Li₄B₇O₁₂Cl.
- \Box The chemical stabilities of the Li₄B₇S₁₂Cl and Li₄Al₃B₄S₁₂Cl need further investigation.