Computational (re)investigation of the structural and electrolyte properties of Li₄P₂S₆, Na₄P₂S₆, and Li₂Na₂P₂S₆

Yan Li¹, Zachary D. Hood² and Natalie A. W. Holzwarth¹

¹Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA ²Electrochemical Materials Laboratory, MIT, Cambridge, MA 02139, USA

Acknowledgements: This work is supported by NSF grant DMR-1507942. Computations were performed on the Wake Forest University DEAC cluster, a centrally managed resource with support provided in part by the University.

- Computational methods
- □ Structures and stabilities of Na₄P₂S₆ and Li₄P₂S₆
- □ Structures and stabilities of predicted Li₂Na₂P₂S₆
- Comparison of electrolyte properties
- □ Summary and conclusions

- Kuhn et al.¹ observed that Na₄P₂S₆ crystallizes to form monoclinic space group
 C2/m (#12)
- Computational results of Rush et al.²: **Kuhn structure is meta-stable**
- Recent experimental results of Hood et al.³ also find the C2/m structure
- Using combined approach of NMR and X-ray, the new experimental analysis⁴ on Li₄P₂S₆ concludes the structure to be ordered with space group P321 (#150)
- Theoretically, Na₄P₂S₆ and Li₄P₂S₆ are chemically and structurally related
- Structure and stability of the mixed ion material Li₂Na₂P₂S₆
- Performance of Li₂Na₂P₂S₆ in comparison with Na₄P₂S₆ as solid electrolytes

¹Kuhn et al., *Z. Anorg. Allg. Chem.* **640**, 689-692 (2014) ²Rush et al., *Solid State Phys.* **286**, 45-50 (2016) ³Hood et al., Manuscript in preparation. ⁴Neuberger et al., *Dalton Trans.* **47**, 11691-11695 (2018)

Property similarities (discrepancies) between Na₄P₂S₆ and Li₄P₂S₆

Material prediction

Conductivity studies

Computational methods

□ Structures and stabilities of Na₄P₂S₆ and Li₄P₂S₆

□ Structures and stabilities of predicted Li₂Na₂P₂S₆

Comparison of electrolyte properties

Summary of Computational methods

- Density Functional Theory (DFT) and Density Functional Perturbation Theory (DFPT) with the modified Perdew-Burke-Ernzerhof generalized gradient approximation¹ (PBEsol GGA) *Previously reported results² obtained using Local-density approximation (LDA)
- The projector augmented wave (PAW) formalism using ABINIT (<u>https://www.abinit.org</u>) & QUANTUM ESPRESSO (<u>http://www.quantum-espresso.org</u>)
- Datasets generated by ATOMPAW code available at http://pwpaw.wfu.edu
- □ Visualization software: XCrySDen, VESTA
- □ Space-group analysis: FINDSYM
- □ X-ray powder diffraction: Mercury

¹Perdew et al., *Phys. Rev. L.* **100**, 136406 (2008) ²Rush et al., *Solid State Phys.* **286**, 45-50 (2016)

Born-Oppenheimer approximation

DFT

At equilibrium: $\mathbf{F}_I = -\frac{\partial U(\{\mathbf{R}_I\})}{\partial \mathbf{R}_I} = 0$

- Optimized structural parameters
- Static lattice energy: $U_{SL} = \min U(\{R_I\})$
- Kohn-Sham orbitals and energies
- Migration related energies

DFPT

Near equilibrium: $M_s(\omega^{\nu})^2 u_{s\alpha}^{\nu}(\mathbf{q}) = \sum_{t\beta} \tilde{C}_{st}^{\alpha\beta}(\mathbf{q}) u_{t\beta}^{\nu}(\mathbf{q})$ and $\tilde{C}_{st}^{\alpha\beta}(\mathbf{q}) \rightleftharpoons C_{st}^{\alpha\beta}(\mathbf{R})$

- Phonon frequencies and eigenvectors at any wavevector
- Phonon dispersions: $\omega^{
 u} \sim \mathbf{q}$
- Phonon density of states (PDOS): $g(\omega) = \frac{V}{(2\pi)^3} \int d^3q \sum_{\nu=1}^{3N} \delta(\omega \omega^{\nu}(\mathbf{q}))$
- Thermodynamic properties such as the

vibrational energy: $F_{vib}(T) = k_B T \int_0^\infty d\omega \ln\left(2\sinh\left(\frac{\hbar\omega}{2k_B T}\right)\right) g(\omega)$

The Helmholtz free energy:

$$F(T) = F_{SL}(T) + F_{vib}(T) pprox U_{SL} + F_{vib}(T)$$

Stable and metastable structures

Computational methods

\Box Structures and stabilities of Na₄P₂S₆ and Li₄P₂S₆

□ Structures and stabilities of predicted Li₂Na₂P₂S₆

Comparison of electrolyte properties

P O S

Projection of the basic structure

$$\mathbf{P}_{\uparrow} = \pm z_P \, \vec{c}$$

$$\mathbf{P}_{\downarrow} = \pm \left(\frac{1}{2} - Z_P \right) \vec{C}$$

Hood et al., J. Solid State Ionics 284, 61 (2016).

Model structures considered

💿 💿 Inequiv. Na(Li) 🌘 P 🜔 S

Hexagonal **P321** (#150)¹ 3 formula units / unit cell Hexagonal **P31m** (#162)³ 1 formula unit / primitive unit cell

Monoclinic **C2/m** (#12)⁴ 1 formula unit / primitive unit cell

 $\frac{1}{3} \mathbf{P}_{\uparrow} \quad \frac{2}{3} \mathbf{P}_{\downarrow}$

100% P↑

100% P↑

¹Neuberger et al., *Dalton Trans.* 47, 11691-11695 (2018)
²Mercier et al., J. *Solid State Chem.* 43, 151–162 (1982)
³Hood et al., *J. Solid State Ionics*, 284, 61 (2016)
⁴Kuhn et al., *Z. Anorg. Allg. Chem.* 640, 689-692 (2014) 10/16/2019

The 236th ECS Meeting

Comparison of the fractional coordinates of $Li_4P_2S_6$ and $Na_4P_2S_6$ based on the Neuberger structure¹.

${ m Li}_4{ m P}_2{ m S}_6$		Calculated			Experiment					
Atom	Wyck	x	y	z	Wyck	x	y	z		
Li	6 g	0.666	0.000	0.000	3 e	0.625/0.683	0.000	0.0000		
Li	6 h	0.667	0.000	$\frac{1}{2}$	3 <i>f</i>	0.631/0.671	0.000	$\frac{1}{2}$		
Р	2 c	0.000	0.000	$0.\bar{1}71$	2 c	0.000	0.000	$0.\bar{1}70$		
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.663	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.668		
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.324	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.335		
\mathbf{S}	6 i	0.110	0.220	0.242	6 g	0.108	0.217	0.241		
\mathbf{S}	6 i	0.114	0.557	0.254	6 g	0.122	0.561	0.250		
\mathbf{S}	6 i	0.447	0.224	0.259	6 g	0.452	0.226	0.255		
$Na_4P_2S_6$		Calculated								
Atom	Wyck	x	y	z						
Na	6 g	0.659	0.000	0.000						
Na	6 h	0.676	0.000	$\frac{1}{2}$						
Р	2 c	0.000	0.000	$0.\bar{1}57$						
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.660						
Р	2 d	$\frac{1}{3}$	$\frac{2}{3}$	0.342						
\mathbf{S}	6 i	0.102	0.205	0.229						
\mathbf{S}	6 i	0.129	0.564	0.271						
\mathbf{S}	6 i	0.463	0.231	0.264						

Comparing X-ray diffraction patterns at $\lambda = 1.54056$ Å

¹Neuberger et al. *Dalton Trans.* **47**, 11691-11695 (2018)

Static lattice results

TABLE: Summary of static lattice results calculated with PBEsol GGA formalism. Lattice constants for the primitive unit cells are listed in units of Å and angles in degrees. The static lattice energy differences ΔU_{SL} are listed as eV/(formula unit) referenced to the energy of the P $\overline{3}$ m1 structure.

$Li_4P_2S_6$	а	b	С	α	β	Y	ΔU_{SL}	
P31m (#162)	6.03	6.03	6.48	90.0	90.0	120.0	0.04	
C2/m (#12)	6.08	6.08	6.89	97.9	97.9	119.1	0.31	
P3m1 (#164) ^a	10.42	10.42	6.54	90.0	90.0	120.0	0.00	
Na ₄ P ₂ S ₆	а	b	С	α	β	γ	ΔU_{SL}	
P31m (#162)	6.45	6.45	7.13	90.0	90.0	120.0	0.09	LDA results
C2/m (#12) ^b	6.51	6.51	7.52	98.5	98.5	117.6	0.00	suggest that C2/m structure
P3m1 (#164)	11.10	11.10	7.25	90.0	90.0	120.0	0.00	is meta-stable
							static	and vibrationa

^a Corresponding experimental values quoted from Neuberger et al., *Dalton Trans.* 47, 11691-11695 (2018) are a = b = 10.51 Å, c = 6.59 Å ^b Corresponding experimental values deduced from Kuhn et al., *Z. Anorg. Allg. Chem.* 640, 689-692 (2014) are a = b = 6.54 Å, c = 7.54 Å, $\alpha = \beta = 98.7$ deg, $\gamma = 118.1$ deg.

Phonon spectrum

¹Suggested path: Hinuma et al., Comp. Mat. Sci. **128**, 140-184 (2017) ²Li et al., J. Phys. Condens. Matter, accepted

Discontinuous branches at Γ : coupling between photon and photon²

Stability analysis

Helmholtz free energy: $F = U_{SL} + F_{vib}$

¹Kuhn et al., *Z. Anorg. Allg. Chem.* **640**, 689-692 (2014) ²Hood et al., *J. Solid State Ionics* **284**, 61 (2016) ³Neuberger et al., *Dalton Trans.* **47**, 11691-11695 (2018)

Computational methods

□ Structures and stabilities of Na₄P₂S₆ and Li₄P₂S₆

□ Structures and stabilities of predicted Li₂Na₂P₂S₆

Comparison of electrolyte properties

Structures of the predicted material: Li₂Na₂P₂S₆

Replace the (a) *g*-type or (b) *h*-type Na ions in the monoclinic $Na_4P_2S_6$ with Li ions

TABLE: Comparison of the optimized lattice parameters for $\text{Li}_2\text{Na}_2\text{P}_2\text{S}_6$ in the R_g^{Li} and R_h^{Li} structures. Also listed is the static lattice energy differences U_{SL} referenced to the energy of the R_h^{Li} structure in units of eV/formula unit.

		R_g^{Li}	R_h^{Li}
Primitive cell:	a = b (Å)	6.18	6.46
	<i>c</i> (Å)	7.50	7.01
	$\alpha = \beta$ (deg)	97.77	97.88
	γ (deg)	119.21	118.43
Conventional	<i>a_c</i> (Å)	6.26	6.61
cell:	b _c (Å)	10.67	11.10
	<i>c_c</i> (Å)	7.50	7.01
	$\boldsymbol{\theta}_{c}$ (deg)	105.50	105.54
	ΔU_{SL} (eV/FU)	-0.16	0.00

Na

Li

Stability of the predicted material: Li₂Na₂P₂S₆

Negative energies (net released energies) imply that the structure of $Li_2Na_2P_2S_6$ is stable with respect to the possible exothermic process.

Computational methods

□ Structures and stabilities of Na₄P₂S₆ and Li₄P₂S₆

□ Structures and stabilities of predicted Li₂Na₂P₂S₆

Comparison of electrolyte properties

Ion migration of vacancy mechanisms

Activation energy: $E_a^{cal} = E_m^{NEB} + \frac{1}{2}E_f$ Conductivity: $\sigma \cdot T = K e^{-E_a^{exp}/k_BT}$

Summary of vacancy diffusion results

-	Material	Functional	Step	Distance	E_m^{cal}	E_f^{cal}	E_a^{cal}	E_a^{exp}
		PBEsol GGA	$h_1 \rightarrow h_2$	3.67	0.25	0.18	0.34	0.39 ³
	11a ₄ P ₂ S ₆	LDA	$h_1 \rightarrow h_2$	3.59	0.30	0.24	0.42 ²	
	$Li_2Na_2P_2S_6$	PBEsol GGA	$h_1 \rightarrow h_2$	3.44	0.16	0.13	0.23	

¹Henkelman et al., *J. Chem. Phys.* **113**, 9901-9904 (2000) ²Rush et al., *Solid State Phys.* **286**, 45-50 (2016) ³Hood et al., Manuscript in preparation. The distance in units of Å, and all energies are given in eV units

Migration study using molecular dynamics simulations

- No $g \rightarrow h$ and $g \rightarrow g$ hopping
- All migrations occur within layer of h sites
- Direct $h \rightarrow h$ vacancy migration is consistent with NEB analysis
- Indirect $h \rightarrow d \rightarrow h$ vacancy migration is prevalent
- No interstitial $d \rightarrow d$ migration
- Calculate E_a from $D(T) = D_0 e^{-E_a/k_BT}$

where
$$D = \frac{1}{6} \lim_{t \to \infty} \left(\frac{1}{t} MSD(t) \right)$$

^{*}AIMD simulations were carried out using supercells composed of 2x1x2 conventional units (96 atoms) ** E_a was obtained from runs of 50-70 ps

Computational methods

□ Structures and stabilities of Na₄P₂S₆ and Li₄P₂S₆

□ Structures and stabilities of predicted Li₂Na₂P₂S₆

Comparison of electrolyte properties

- □ According to PBEsol GGA results, $Na_4P_2S_6$ is to be stabilized in the C2/m structure and $Li_4P_2S_6$ is to be stabilized in the P $\overline{3}$ m1 structure
- PBEsol GGA and LDA results of activation energy for Na ion migration reasonably agree with the experimental measurements which suggest a viable solid electrolyte
- □ The predicted crystal Li₂Na₂P₂S₆ has a stable structure. Compared to Na₄P₂S₆, the mixed alkali electrolyte can substantially enhances Na ion conductivity
- Both NEB and MD simulations reveal that the Na ion diffusions in both Na₄P₂S₆ and Li₂Na₂P₂S₆ are via vacancy mechanisms, and MD simulations provide more information on understanding the conductivity mechanisms