ES18: Electronic Structure Workshop -- hosted by U. Penn

Perspectives on the Projector Augmented Wave Method (PAW)

Natalie A. W. Holzwarth, Wake Forest University, Department of Physics, Winston-Salem, NC, USA

Acknowledgements:

- Cameron Kates, Jamie Drewery, Hannah Zhang, Zachary Pipkorn (former WFU undergrads)
- Zachary Hood (WFU chemistry alum, Ga Tech Ph. D)
- Jason Howard, Ahmad Al-Qawasmeh, Yan Li, Larry E. Rush, Nicholas Lepley (current and former WFU grad students)
- NSF grant DMR-1507942

WAKE FOREST

Outline

- Some history
- PAW vs NC and USPP
- PAW details
- PAW advice
- Example application -- the study of solid electrolytes

input parameters

quantum-espresso (http://www.quantum-espresso.org/) abinit (https://www.abinit.org/) VASP (https://www.vasp.at/) Qbox (http://qboxcode.org/) RMG (http://rmgdft.sourceforge.net/)

useful results

Inside the box --

Basic ideas of the Projector Augmented Wave (PAW) method

Peter Blöchl,

Institute of Theoretical Physics TU Clausthal, Germany

Blöch presented his ideas at ES93 -- "PAW: an allelectron method for first-principles molecular dynamics"

Reference: P. E. Blöchl, PRB 50, 17953 (1994)

Features

- Operationally similar to other pseudopotential methods, particularly to the ultra-soft pseudopotential method of D.
 Vanderbilt; often run within frozen core approximation
- Can retrieve approximate "all-electron" wavefunctions from the results of the calculation; useful for NMR analysis for example
- May have additional accuracy controls particularly of the higher multipole Coulombic contributions.

6/12/2018

Basic ideas of the Projector Augmented Wave (PAW) method

Valence electron wavefunctions are approximated by the form

$$\Psi_{nk}(\mathbf{r}) \approx \tilde{\Psi}_{nk}(\mathbf{r}) + \sum_{ab} \left(\varphi_b^a \left(\mathbf{r} - \mathbf{R}_a \right) - \tilde{\varphi}_b^a \left(\mathbf{r} - \mathbf{R}_a \right) \right) \left\langle \tilde{p}_b^a \left(\mathbf{r} - \mathbf{R}_a \right) \middle| \tilde{\Psi}_{nk}(\mathbf{r}) \right\rangle$$
All-electron
wavefunction
Pseudowavefunction,
optimized in solving
Kohn-Sham equations
Atom-centered functions:
All electron basis functions
Pseudo basis functions
Projector functions
 $\Psi_{nk}(\mathbf{r})$: determined self-consistently within calculation

 $\begin{cases} \varphi_b^a(\mathbf{r}), \tilde{\varphi}_b^a(\mathbf{r}), \tilde{p}_b^a(\mathbf{r}) \end{cases}: \text{ part of pseudopotential construction; stored in PAW dataset} \\ \hline 6/12/2018 \qquad \qquad Electronic Structure Workshop 2018 \qquad 7 \end{cases}$

Basic ideas of the Projector Augmented Wave (PAW) method

• Evaluation of the total electronic energy:

 $E_{\rm total}$

 $ilde{E}_{ ext{totr}}$

Pseudoenergy (evaluated in plane wave basis or on regular grid)

$$\sum \Delta E_a$$

One-center atomic contributions (evaluated within augmentation spheres)

6/12/2018

Electronic Structure Workshop 2018

Comment on one center energy contributions

 Norm-conserving pseudopotential scheme using the IVERSITY Kleinman-Bylander method (PRL 48, 1425 (1982)): The non-local pseudopotential contributions for site a :

$$\Delta E_{a} = \sum_{n\mathbf{k},b} W_{n\mathbf{k}} \left\langle \tilde{\Psi}_{n\mathbf{k}} \middle| \tilde{\chi}_{b}^{a} \right\rangle \left\langle \tilde{\chi}_{b}^{a} \middle| \tilde{\Psi}_{n\mathbf{k}} \right\rangle, \text{ where } \tilde{\chi}_{b}^{a} (\mathbf{r} - \mathbf{R}^{a}) \text{ are }$$

fixed functions depending on the non-local pseudopotentials and corresponding pseudobasis functions; W_{nk} are occupancy and sampling weights.

• PAW and USPS :

$$\Delta E_{a} = \sum_{n\mathbf{k},bb'} W_{n\mathbf{k}} \left\langle \tilde{\Psi}_{n\mathbf{k}} \middle| \tilde{p}_{b}^{a} \right\rangle M_{bb'}^{a} \left\langle \tilde{p}_{b'}^{a} \middle| \tilde{\Psi}_{n\mathbf{k}} \right\rangle, \text{ where } \tilde{p}_{b}^{a} (\mathbf{r} - \mathbf{R}^{a}) \text{ are }$$

projector functions, $M_{bb'}^{a}$ are matrix elements depending on all-electron and pseudobasis functions, and W_{nk} are

occupancy and Brillouin zone sampling weights.

6/12/2018

Comment on one center energy contributions -- continued for PAW and USPS

 $M_{bb'}^{a}$ matrix elements (different for USPS and PAW) are evaluated within the augmentation spheres. For example, the kinetic energy term:

$$K_{bb'}^{a} = \delta_{l_{b}l_{b'}} \delta_{m_{b}m_{b'}} \frac{\hbar^{2}}{2m} \left(\int_{0}^{r_{c}} dr \left(\frac{d\phi_{b}^{a}(r)}{dr} \frac{d\phi_{b'}^{a}(r)}{dr} - \frac{d\tilde{\phi}_{b}^{a}(r)}{dr} \frac{d\tilde{\phi}_{b'}^{a}(r)}{dr} \right) + l_{b}(l_{b}+1) \left(\int_{0}^{r_{c}} \frac{dr}{r^{2}} \left(\phi_{b}^{a}(r) \phi_{b'}^{a}(r) - \tilde{\phi}_{b}^{a}(r) \tilde{\phi}_{b'}^{a}(r) \right) \right) \right)$$

where $\varphi_b^a(\mathbf{r}) \equiv \frac{\phi_b^a(r)}{r} Y_{l_b m_b}(\hat{\mathbf{r}})$ and $\tilde{\varphi}_b^a(\mathbf{r}) \equiv \frac{\tilde{\phi}_b^a(r)}{r} Y_{l_b m_b}(\hat{\mathbf{r}})$

Note that for USPS, the operator $Q_{bb'}^a(r) \equiv \left(\phi_b^a(r)\phi_{b'}^a(r) - \tilde{\phi}_b^a(r)\tilde{\phi}_{b'}^a(r)\right)$ is pseudized, while for PAW it is evaluated within matrix elements and "compensation charges" are added. In both cases, multipole moments are conserved.

6/12/2018

Electronic Structure Workshop 2018

Summary of properties of norm-conserving (NC), ultra-soft-pseudopotential (USPS) and projector augmented wave (PAW) methods

	NC	USPS	PAW
Conservation of charge			
Multipole moments in Hartree interaction			
Retrieve all-electron wavefunction			

Some details – use of "compensation charge"

PAW approximation to valence all-electron wave function

$$\Psi_{n\mathbf{k}}(\mathbf{r}) \approx \tilde{\Psi}_{n\mathbf{k}}(\mathbf{r}) + \sum_{ab} \left(\varphi_b^a \left(\mathbf{r} - \mathbf{R}_a \right) - \tilde{\varphi}_b^a \left(\mathbf{r} - \mathbf{R}_a \right) \right) \left\langle \tilde{p}_b^a \left(\mathbf{r} - \mathbf{R}_a \right) \right| \tilde{\Psi}_{n\mathbf{k}}(\mathbf{r}) \right\rangle$$

PAW approximation to all-electron density

$$n_{\text{valence}}(\mathbf{r}) \approx \sum_{n\mathbf{k}} W_{n\mathbf{k}} \left| \Psi_{n\mathbf{k}}(\mathbf{r}) \right|^{2}$$

$$\approx \sum_{n\mathbf{k}} W_{n\mathbf{k}} \left| \tilde{\Psi}_{n\mathbf{k}}(\mathbf{r}) \right|^{2}$$

$$+ \sum_{n\mathbf{k}} W_{n\mathbf{k}} \sum_{a,bb'} \left\langle \tilde{\Psi}_{n\mathbf{k}} \left| \tilde{p}_{b}^{a} \right\rangle \left\langle \tilde{p}_{b'}^{a} \right| \tilde{\Psi}_{n\mathbf{k}} \right\rangle \left(\varphi_{b}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) \varphi_{b'}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) - \tilde{\varphi}_{b}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) \tilde{\varphi}_{b'}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) \right)$$

$$\equiv \sum_{n\mathbf{k}} W_{n\mathbf{k}} \left(\left| \tilde{\Psi}_{n\mathbf{k}}(\mathbf{r}) \right|^{2} + \sum_{a,bb'} \left\langle \tilde{\Psi}_{n\mathbf{k}} \right| \tilde{p}_{b}^{a} \right\rangle \left\langle \tilde{p}_{b'}^{a} \right| \tilde{\Psi}_{n\mathbf{k}} \right\rangle Q_{bb'}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) \right)$$

$$\equiv \tilde{n}(\mathbf{r}) + \sum_{a} \left(n^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) - \tilde{n}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) - \tilde{n}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) - \tilde{n}^{a} \left(\mathbf{r} - \mathbf{R}_{a} \right) \right)$$

Some details – use of "compensation charge" -- continued

Compensation charge is designed to have the same multipole moments of one-center charge differences:

$$\int_{r \le r_c^a} d^3 r \ r^L Y_{LM}(\hat{\mathbf{r}}) \hat{n}^a(\mathbf{r}) = \int_{r \le r_c^a} d^3 r \ r^L Y_{LM}(\hat{\mathbf{r}}) \Big(n^a(\mathbf{r}) - \tilde{n}^a(\mathbf{r}) \Big)$$

Typical shape of compensation charge for L=0 component --

Some details – use of "compensation charge" -- continued

The inclusion of the "compensation" charge ensures

- 1. Hartree energy of smooth charge density represents correct charge
- 2. Hartree energy contributions of one-center charge is confined within augmentation sphere:

$$\int_{r \le r_c^a} d^3 r \cdot \frac{n^a(\mathbf{r}) - \tilde{n}^a(\mathbf{r}) - \hat{n}^a(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} = \begin{cases} V_{\text{Hartree}}^a(\mathbf{r}) & \text{for } r \le r_c^a \\ 0 & \text{for } r > r_c^a \end{cases}$$

Some details – form of exchange-correlation contributions

For $E_{xc}[n(\mathbf{r})] = \int d^3 r \ K_{xc}(n(\mathbf{r}))$: Smooth contribution: $\tilde{E}_{xc} = E_{xc}[\tilde{n}(\mathbf{r}) + \tilde{n}_{core}(\mathbf{r})]$ One-center contributions: $E_{xc}^a - \tilde{E}_{xc}^a = E_{xc}[n^a(\mathbf{r}) + n^a_{core}(\mathbf{r})] - E_{xc}[\tilde{n}^a(\mathbf{r}) + \tilde{n}_{core}^a(\mathbf{r})]$

Note that VASP and Quantum-Espresso use $E_{xc}[\tilde{n}(\mathbf{r}) + \tilde{n}_{core}(\mathbf{r}) + \hat{n}(\mathbf{r})]$ and $E_{xc}[\tilde{n}^{a}(\mathbf{r}) + \tilde{n}_{core}^{a}(\mathbf{r}) + \hat{n}^{a}(\mathbf{r})]$ which can cause trouble occasionally. Measure of accuracy

Recipes for constructing projector and basis functions

$$\varphi_{b}^{a}(\mathbf{r}) = \frac{\varphi_{b}^{a}(r)}{r} Y_{l_{b}m_{b}}(\hat{\mathbf{r}}) \qquad \tilde{\varphi}_{b}^{a}(\mathbf{r}) = \frac{\tilde{\varphi}_{b}^{a}(r)}{r} Y_{l_{b}m_{b}}(\hat{\mathbf{r}}) \qquad \tilde{p}_{b}^{a}(\mathbf{r}) = \frac{\tilde{p}_{b}^{a}(r)}{r} Y_{l_{b}m_{b}}(\hat{\mathbf{r}})$$
Constraints:

$$\tilde{\varphi}_{b}^{a}(r) = \varphi_{b}^{a}(r) \text{ for } r \ge r_{c}^{a}$$

$$\tilde{p}_{b}^{a}(r) = 0 \qquad \text{ for } r \ge r_{c}^{a}$$

$$\left\langle \tilde{p}_{b}^{a} \middle| \tilde{\varphi}_{b'}^{a} \right\rangle = \delta_{bb'}$$

Peter Blöchl's scheme (set #1)

Choose projectors $\tilde{p}_b^a(r)^*$

 \Rightarrow Derive $\tilde{\varphi}_b^a(r)$

*Typically Bessel-like function with zero value and derivative at $r_c^a_{6/12/2018}$ David Vanderbilt's scheme (set #2)

Choose pseudo bases $\tilde{\varphi}^a_b(r)^*$

 \Rightarrow Derive $\tilde{p}_b^a(r)$

*Polynomial or Bessel function form following RRKJ, PRB 41, 1227 (1990)

Example projector and basis functions

Br 4s orbital

From set #1

From set #2

Set of basis and projector functions for set #1

^b Department of Physics, Wake Forest University, Winston-Salem, NC 27109, USA

^c Minnesota Supercomputing Institute for Digital Technology and Advanced Computations, University of Minnesota, Minneapolis, MN 55455, USA

6/12/2018

Electronic Structure Workshop 2018

General advice about generating PAW datasets

- ATOMPAW code* available at http://pwpaw.wfu.edu
- Develop and test atomic datasets for the full scope of your project → determines r_c^a.
- Determine local pseudopotential from self-consistent allelectron potential
- Determine basis functions, with or without semicore states; usually 2 sets of basis functions and projectors for each *l* channel.
- Test binding energy curves for a few binary compounds related to your project.
- Check plane wave (or grid spacing convergence of your data sets before starting production runs.

*With major modification by Marc Torrent and other Abinit developers.

6/12/2018

Simulations of Idealized Solid Electrolytes

Theoretical battery

22

What can first principles modeling bring to the development of all solid state batteries?

- Examine structures and stabilities of potential ionic conductors
- Examine mechanisms and model efficiencies for ionic conduction
- Model ideal interfaces between electrolytes and electrodes

From Oak Ridge National Laboratory:

Adv. Energy Mater. 2015, 5, 1401408

www.MaterialsViews.com

DOI: 10.1002/aenm.201401408

www.advenergymat.de

Solid Electrolyte: the Key for High-Voltage Lithium Batteries

Juchuan Li,* Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J. Dudney*

Advantages

high voltage cathodes and with Li metal anodes

Disadvantages

Compatible and stable with > Relatively low ionic conductivity (Compensated with the use of less electrolyte?)

Lower total capacity

Demonstrated for $\text{LiNi}_{0.5}\text{Mn}_{1.5}\text{O}_{4}/\text{LiPON/Li}$

- > 10⁻⁶ m LiPON electrolyte layer achieved adequate conductivity
- > 10,000 cycles* with 90% capacity retention
- *1 cycle per day for 27 years

Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

6/12/2018

Li₃PO₄ crystals

 γ -Li₃PO₄

(Pnma)

Electronic Structure Workshop 2018

Validation of calculations WAKE FOREST Raman spectra – Experiment & Calculation

γ -Li₃PO₄

β -Li₃PO₄

A: B. N. Mavrin et al, J. Exp. Theor. Phys. **96**,53 (2003); B: F. Harbach and F. Fischer, Phys. Status Solidi B **66**, 237 (1974) – room temp. C: Ref. B at liquid nitrogen temp.; D: L. Popović et al, J. Raman Spectrosc. **34**,77 (2003).

Heats of formation – Experiment & Calculation

Table 1. Calculated heats of formation for Li phosphates, phospho-nitrides,

related materials. The structural designation uses the the notation defined in the international rapid of Crystallography⁸⁵ based on structural information reported in the International Crystal Structure Database.⁸⁶ The heats of formation ΔH (eV/FU) are given in units of eV per formula unit. When available from Ref. [31] and [32] experiment values are indicated in parentheses. Those indicated with "" were used fitting the O and N reference energies as explained in the text.

Material	Structure	$\Delta H \ (eV/FU)$			
8-Li2PO4	Pmn2i (#31)	-21.23	Material	Structure	$\Delta H (eV/FU)$
γ -Li ₃ PO ₄	Pnma (#62)	-21.20 (-21.72*)	N_2O_5	$P6_3/mmc$ (#194)	- 0.94 (- 0.45*)
γ -Li ₃ PS ₄	$Pmn2_1$ (#31)	- 8.37	P_3N_5	C2/c (#15)	- 3.02 (- 3.32*)
β -Li ₃ PS ₄	Pnma~(#62)	- 8.28	$h-P_2O_5$	R3c (#161)	-15.45 (-15.53*)
			$o-P_2O_5$	Fdd2 (#43)	-15.78
$Li_4P_2O_6$	$P\bar{3}1m~(\#162)$	-29.72	P_2S_5	$P\bar{1}$ (#2)	- 1.93
$Li_4P_2O_7$	$P\bar{1}$ (#2)	-33.97	P_4S_3	Pnma (#62)	- 2.45 (- 2.33)
$Li_5P_2O_6N$	$P\bar{1}$ (#2)	-33.18	SO_3	$Pna2_1$ (#33)	- 4.84 (- 4.71*)
$Li_4P_2S_6$	$P\bar{3}1m~(\#162)$	-12.42			
$Li_4P_2S_7$ $P\bar{1}$ (#2)	$P\bar{1}$ (#2)	-11.59	Li_3N	P6/mmm (#191)	- 1.60 (- 1.71*)
		Li_2O	$Fm\bar{3}m$ (#225)	- 6.10 (- 6.20*)	
$Li_7P_3O_{11}$	$P\bar{1}$ (#2)	-54.84	Li_2O_2	$P6_3/mmc$ (#194)	- 6.35 (- 6.57*)
$Li_7P_3S_{11}$ $P\bar{1}$ (#2)	$P\bar{1}$ (#2)	-20.01	Li_3P	$P6_3/mmc$ (#194)	- 3.47
		Li_2S	$Fm\bar{3}m$ (#225)	- 4.30 (- 4.57)	
LiPO ₃	P2/c (#13)	-12.75	Li_2S_2	$P6_3/mmc$ (#194)	- 4.09
LiPN ₂	$I\bar{4}2d~(\#122)$	- 3.65			
$s1-Li_2PO_2N$	Pbcm~(#57)	-12.35	LiNO ₃	$R\bar{3}c$ (#167)	- 5.37 (- 5.01*)
SD-Li ₂ PO ₂ N	$Cmc2_1$ (#36)	-12.47	Li_2SO_4	$P2_1/c$ (#14)	-14.63 (-14.89*)
SD -Li ₂ PS_2N	$Cmc2_1$ (#36)	- 5.80			
6/12/2018		Electronic Struc	ture Worksh	10p 2018	29

Systematic study of LiPON materials – $Li_x PO_y N_z$ – (Yaojun A. Du and N. A. W. Holzwarth, Phys. Rev. B 81, 184106 (2010))

Experimentally known structure LiPO₃

Computationally predicted structure s₁-Li₂PO₂N

Fig. 7. Ball and stick diagrams for LiPO₃ in the P2/c structure (20 formula units per unit cell) and s1-Li₂PO₂N in the *Pbcm* structure (4 formula units per unit cell) from the calculated results. For each crystal diagram, a view of a horizontal chain axis is also provided for a single phosphate or phospho-nitride chain.

Electronic Structure Workshop 2018

Calculations have now verified that the SD structure is more stable than the s_1 structure by 0.1 eV/FU.

Synthesis of Li₂PO₂N by Keerthi Senevirathne, Cynthia Day, Michael Gross, and Abdessadek Lachgar (SS/ 233, 95-101 (2013)) High temperature solid state synthesis using reaction: $Li_2O + \frac{1}{5}P_2O_5 + \frac{1}{5}P_3N_5 \rightarrow Li_2PO_2N$

Electronic Structure Workshop 2018

Systematic study of Li_xPS_y materials – (N. D. Lepley and N. A. W. Holzwarth, J. Electrochem. Soc. 159, A538 (2012), Phys. Rev. B 88, 104103 (2013))

Some lithium thiophosphate crystal structures

Experimentally amorphous; computationally metastable in $P\overline{1}$ structure

Experimentally and computationally metastable in $P\overline{1}$ structure

C

 ${
m Li}_7{
m P}_3{
m S}_{11}$

Simulations of ideal γ-Li₃PS₄ [0 1 0] surface in the presence of Li

Initial configuration:

Computed optimized structure:

Possible interface configurations

Thoughts on the role of simulations in developing battery technology

- Ideal research effort in materials includes close collaboration of both simulations and experimental measurements.
- For battery technology, there remain many opportunities for new materials development.