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Outline
• Some history
• PAW vs NC and USPP
• PAW details
• PAW advice
• Example application -- the study of  solid 

electrolytes
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input 
parameters useful results

quantum-espresso 
(http://www.quantum-espresso.org/)

abinit (https://www.abinit.org/)

VASP (https://www.vasp.at/)

Qbox (http://qboxcode.org/)

RMG (http://rmgdft.sourceforge.net/)
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Basic ideas of the Projector Augmented Wave 
(PAW) method

Blöch presented his ideas at ES93 --“PAW: an all-
electron method for first-principles molecular 
dynamics”
Reference:      P. E. Blöchl, PRB 50, 17953 (1994)

Peter Blöchl, 
Institute of Theoretical Physics 
TU Clausthal, Germany

Features
• Operationally similar to other pseudopotential methods, 

particularly to the ultra-soft pseudopotential method of D. 
Vanderbilt; often run within frozen core approximation

• Can retrieve approximate ‘’all-electron” wavefunctions from the 
results of the calculation; useful for NMR analysis for example 

• May have additional accuracy controls particularly of the higher 
multipole Coulombic contributions.



Atom-centered functions:
All electron basis functions
Pseudo basis functions
Projector functions
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Basic ideas of the Projector Augmented Wave 
(PAW) method

• Valence electron wavefunctions are approximated by the form

      ( ) ( ) ( )a
a a a
b b b

a
n a

b
n a np         k k kr r r R r R r R r 

All-electron 
wavefunction

Pseudowavefunction, 
optimized in solving 
Kohn-Sham equations

 
 

( ) :   determined self-consistently within calculation

( ), ( ), ( ) :   part of pseudopotential construction; stored in PAW dataset

n

a a a
b b bp 

 k r

r r r



 
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Basic ideas of the Projector Augmented Wave 
(PAW) method

• Evaluation of the total electronic energy:

total total                      
a

aE E E  

Pseudoenergy
(evaluated in plane 
wave basis or on 
regular grid)

One-center atomic 
contributions 
(evaluated within 
augmentation spheres)
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Comment on one center energy contributions
• Norm-conserving pseudopotential scheme using the 

Kleinman-Bylander method (PRL 48, 1425 (1982)):

• PAW and USPS :

,

( ) are 

fixed functions depending on the non-local pseudopotentials

and corresponding pseudobasis functi

The non-local pseudopotential contributions for site :

,where a a a a
n n n

n b
a b b bE

a

W      k k k
k

r R   

ons;  are occupancy

and sampling weights.

nW k

'
' '

'

,

( ) are 

projector functions,   are matrix elements depending on 

all-electron and pseudobasis functions, and  are 

occupancy and Brillouin zone 

,where a a a a a
a b bb b b

a

n n n
n bb

n

bb

E p M p p

M

W

W     k k k
k

k

r R   

sampling weights.
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Comment on one center energy contributions 
-- continued for PAW and USPS

' '

'

2
' '

'

 matrix elements (different for USPS and PAW) are evaluated

within the augmentation spheres.  For example, the kinetic energy term:

( ) ( ) ( ) ( )

2bb bb

a
bb

a a a a
a b b b b
b l m mb l

M

d r d r d r d r
K dr

m dr dr dr dr

   
  

 

 

0

' '2

0

( 1) ( ) ( ) ( ) ( )

( ) ( )
ˆ ˆwhere ( ) ( )  and  ( ) ( ) 

                                +

c

c

b b b b

r

r

a a a a
b b b b b b

a a
a ab b
b l m b l m

dr
l r r r r

r

r r
Y Y

r r

l    

 
 

 
 
 

 
   



 




 

 

 



r r r r

 




 ' '' ( ) ( ) ( ) ( )

is pseudized, while for PAW it is evaluated within matrix elements and

"compensation charges" are added. In both cases, multipole

Note that for USPS, the operator  ( ) a a a a
b b b b

a
bb r r r rQ r       

 moments 

are conserved.
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Summary of properties of norm-conserving (NC),
ultra-soft-pseudopotential (USPS) and projector augmented wave 
(PAW) methods

NC USPS PAW
Conservation of charge

Multipole moments
in Hartree interaction

Retrieve all-electron 
wavefunction
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Some details – use of “compensation charge”

      

2

valence

2

PAW approximation to valence all-electron wave function

( ) ( ) ( )

PAW approximation to all-electron density

( ) ( )

  ( )     

  

n n a a a n

n n
n

n n
n

n n

a a a
b b b

ab

W

p

W

W

n

    

 

 

    









k k k

k k
k

k k
k

k

r r r R r R r R r

r r

r

  







        

 

    

   

2

' ' '
, '

' '
, '

   ( )

   ( )

    = ( )                                   

a a a a a a
b b b b b b

a bb

a a a
b b bb

a b

n a a a a
n

n n n n a
n

a a
a a

a a
a

b

a

a

p p

pW

n

Q

n

p

n n

n n

       

 
  

 

   

 



   

 



 

 



k k
k

k k k k
k

r R r R r R r R

r r R

r r R r R

r r R r R



  





 

 



      
a
  ˆa an r R ˆa a

a

n  r R
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Some details – use of “compensation charge”
-- continued

 3 3

Compensation charge is designed to have the same

multipole moments of one-center charge differences:

ˆ ˆˆ( ) ( ) ( ) ( ) ( )  
a a
c c

LM LM

r

L a L a a

r r r

d Yr n dr nr Yr n
 

  r r r r r

0L 
Typical shape of 
compensation charge 
for L=0 component --

rc
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Some details – use of “compensation charge”
-- continued

The inclusion of the "compensation" charge ensures

1.   Hartree energy of smooth charge density represents correct charge

2.   Hartree energy contributions of one-center charge is confined within

      a

3 Hartree

o

ˆ( ) ( ) (

ugmentation sphere:

( ) for  

0 f r
'

'  

)

 a
c

a

r

a a a a
c

a
cr

n V r r
d

r r

n n
r



 
 



 


r r r

r r

r
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Some details – form of exchange-correlation                                          
contributions 

core

core core

3For       [ ( )] ( )) :

Smooth contribution:           [ ( ) ( )]

One-center contributions:    = [ ( ) ( )] [ ( ) ( )] 

 (xc

xc xc

a a
xc x

c

c xc xc

x

a a a a

E n d n

E E n n

E E E n n E n n

r K

 

   

r r

r r

r r r r

  

  

core

core

Note that VASP and Quantum-Espresso use 

ˆ[ ( ) ( ) ( )]

ˆand    [ ( ) ( ) ( )] 

which can cause trouble occasionally.

a

xc

x
a

c
a

E n n n

E n n n

 

 

r r r

r r r

 

 

non-linear core correction (S. G. 
Louie et al. PRB 26, 1738 (1982))
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Measure of accuracy

Binding energy curve for CsBr
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Recipes for constructing projector and 
basis functions

( ) ( ) ( )
ˆ ˆ ˆ( ) ( )      ( ) ( )        ( ) ( )

Constraints:         ( ) ( )  for 

                            ( ) 0          for 

           

b b b b b b

a a a
a a ab b b
b l b l b l

a a a
b b c

a a
b

m m m

c

r r p r
Y Y p Y

r r r

r r r r

p r r r

 
 

 

  

 

 

r r r r r r
 

 





' '                 =              bb
a a
b bp  

Peter Blöchl’s scheme (set #1) David Vanderbilt’s scheme (set #2)

Choose projectors  ( )

          Derive  ( )

a
b

a
b

p r

r





Choose pseudo bases ( ) 

          Derive  ( )

a
b

a
b

r

p r









*

*Polynomial or Bessel function 
form following RRKJ, PRB 41, 
1227 (1990) 

*

*Typically Bessel-like function 
with zero value and derivative 
at rc

a
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( )a
b r

( )a
b r

( )a
bp r

Br  4s orbital

From set #1 From set #2

( )a
b r

( )a
b r

( )a
bp r

Example projector and basis functions
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Br

4s

4p

3dx1/2 ed

ep

es

Cs

x1/2

5s 6s

5p ep

4d ed

Set of basis and projector functions for set #1
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Efforts to use machine learning methods to 
optimize PAW datasets
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General advice about generating PAW datasets

• ATOMPAW code* available at http://pwpaw.wfu.edu
• Develop and test atomic datasets for the full scope of your 

project   determines rc
a . 

• Determine local pseudopotential from self-consistent all-
electron potential

• Determine basis functions, with or without semicore states; 
usually 2 sets of basis functions and projectors for each l
channel.

• Test binding energy curves for a few binary compounds 
related to your project.

• Check plane wave (or grid spacing convergence of your data 
sets before starting production runs.

*With major modification by Marc Torrent and other Abinit
developers.
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Example application of PAW formalism

Simulations of  Idealized Solid Electrolytes

or
Na+

Theoretical battery
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What can first principles modeling bring to the 
development of all solid state batteries?

• Examine structures and stabilities of potential ionic 
conductors

• Examine mechanisms and model efficiencies for 
ionic conduction

• Model ideal interfaces between electrolytes and 
electrodes
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Advantages
 Compatible and stable with 

high voltage cathodes and 
with Li metal anodes

Disadvantages
 Relatively low ionic conductivity 

(Compensated with the use of 
less electrolyte?)

 Lower total capacity

Demonstrated for LiNi0.5Mn1.5O4/LiPON/Li  
 10-6 m LiPON electrolyte layer achieved adequate conductivity 
 10,000 cycles* with 90% capacity retention

*1 cycle per day for 27 years

From Oak Ridge National Laboratory:
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

b-Li3PS4

R T

Li7P3S11

LiPON
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Solid electrolyte families
investigated in this study:

P

Li

N
O

Li3N Li3P

Li3PO4

Li7PN4

LiPN2

LiP4N7

P3N5 P2O5

Li14P2O3N6

Li2O

LiPO3

Li4P2O7Li2PO2N

LixPOyNz

LixPSy

+ a few related materials such as 
Li4SnS4, Na4P2S6, Na3SbS4
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Li3PO4 crystals

(Pnma)

(Pmn21)



6/12/2018 Electronic Structure Workshop 2018 28

Validation of calculations

A:  B. N. Mavrin et al,  J. Exp. Theor. Phys. 96,53 (2003); B: F. Harbach and F. Fischer, Phys. Status Solidi 
B 66, 237 (1974) – room temp.  C: Ref. B at liquid nitrogen temp.; D: L. Popović et al, J. Raman 
Spectrosc. 34,77 (2003). 
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Heats of formation – Experiment & Calculation
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P

Li

N
O

Li3N Li3P

Li3PO4

Li7PN4

LiPN2

LiP4N7

P3N5 P2O5

Li14P2O3N6

Li2O

LiPO3

Li4P2O7Li2PO2N

Systematic study of LiPON materials – LixPOyNz –
(Yaojun A. Du and N. A. W. Holzwarth, Phys. Rev. B 81, 184106 (2010) )

Typical composition of 
amorphous LiPON films
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Experimentally 
known structure

Computationally 
predicted structure
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Computationally predicted structure

Cmc21

Pbcm

Synthesis of Li2PO2N by 
Keerthi Senevirathne, 
Cynthia Day, Michael Gross, 
and Abdessadek Lachgar
(SSI 233, 95-101 (2013))
High temperature solid state 
synthesis using reaction:

1 1
2 2 5 3 5 2 25 5

Li O  P O  P N Li PO N  

Calculations have now 
verified that the SD structure 
is more stable than the s1

structure by 0.1 eV/FU.

Experimentally realized structure
SD-Li2PO2N



Systematic study of LixPSy materials – (N. D. Lepley and N. A. W. 
Holzwarth, J. Electrochem. Soc. 159,  A538 (2012), Phys. Rev. B 88, 
104103 (2013) )
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Some lithium thiophosphate
crystal structures

Experimentally amorphous;

computationally metastable

in 1 structureP

Experimentally and computationally

metastable in 1 structureP
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Crystal structure of bulk Li3PS4 – g-form 
Pmn21 (#31)

Note:  Li3PS4 is also found in
the  b-form with Pnma (#62)
structure
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Simulations of ideal g-Li3PS4 [0 1 0] surface
in the presence of Li

Initial configuration: Computed optimized 
structure:
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electrolyte
valence

electrolyte
conduction

Energy

filled 
metal
bands

empty 
metal
bands

Eg

System Fermi level should fall 
within electrolyte band gap. 

Energy diagram for ideal electrolyte/metal interface

Interface
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electrolyte
valence

electrolyte
conduction

filled 
metal
bands

empty 
metal
bands

Eg
Syste

m
 Fe

rm
i leve

l

Possible interface configurations

Metal

Interface

Electrolye

ideal

reactive

finite
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g-Li3PO4/Li  system

b

a

Li P O
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b

g-Li3PS4/Li system
(Lepley (et al.) PRB 92 21401 (2015))
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Thoughts on the role of simulations in developing battery technology

 Ideal research effort in materials includes close 
collaboration of both simulations and experimental 
measurements.

 For battery technology, there remain many opportunities 
for new materials development.

Summary of interface results             
ideal                                finite                                reactive

g-Li3PO4 /Li Li7PN4/Li                g-Li3PS4/Li                       Na3SbS4/Na


