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Li4P2S6
Why--

What--

• Part of search for ideal solid electrolyte materials for all-
solid state Li ion batteries

• Reported in by Mercier et. al. , J. Solid State Chemistry 43,
151-164 (1982); hexagonal structure with disorder on the 
P sites

• Frequently identified as unintended  constituent of solid 
electrolyte preparations;  relatively stability in air

Combined experimental and computation study including:
• Structural analysis
• Thermal stability
• Transport properties
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Outline
Motivation

 Structural analysis

 Thermal stability

 Ionic conductivity

 Summary and conclusions
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Motivation for studying Li4P2S6:
 Part of the search for the ideal solid electrolyte material 

for all-solid state Li ion batteries
 Li4P2S6 frequently identified as unintended  stable 

component of solid electrolyte preparations
 Interesting structural properties, including disorder
 Transport and stability properties  

Previous work:
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Synthesis:

2 2 5 4 2C 6900
2Li   Li P S  +S + S   P S o

Sulfur removed by treatment with solvent; sample prepared 
for electrochemical applications using ball milling.   

Scanning Electron Micrograph of prepared sample:
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Computational methods
• Density functional theory with LDA
• PAW formalism using datasets generated with ATOMPAW code
• Electronic structure calculations performed using QUANTUM 

ESPRESSO and ABINIT codes
• Plane wave expansion for wave functions with
• Brillouin zone integration mesh of  0.003 bohr-3

• Visualization software:  Xcrysden and VESTA; X-ray powder 
diffract simulated using Mercury

2
64 Ry k G
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Crystal structure:   Space Group    P63/mcm  (#193)
Projection on to hexagonal plane:
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Crystal structure:   Space Group    P63/mcm  (#193)
Li4P2S6 units:
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Crystal structure:   Space Group    P63/mcm  (#193)
Disorder in P-P placements:
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Structural variation can be mapped on to a two-dimensional 
hexagonal lattice with each P configuration  taking z    or z     
settings; Li and S configurations fixed
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Examples:

Structure “b”

Structure “c”

Structure “d” DE = 0

DE = 0

DE = 0.03 eV
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Temperature     dependence of X-ray powder diffraction
in
^
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a (Å) c (Å) zP zS

Exp. 298K  (X-ray) 6.0709 6.5903 0.1715 0.3237

Exp.   13K (X-ray) 6.0747 6.5966 0.1715 0.3237

Exp.  13K (neutron) 6.0761 6.5961 0.1698 0.3284

Diffraction analysis
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Comparison of 13 K
X-ray data with simulations 

Note: simulations 
scaled by 102% 
to compensate 
for systematic 
LDA error.

Extra peaks

Simulations consistent 
with incoherent average 
over all P z      and z            
configurations
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Stability: Li4P2S6 is much less reactive than other 
lithium thio-phosphates, but it decomposes in air, 
especially at higher temperature

Decomposition 
products:
P2O5

Li4P2O7

Li2SO4
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Ionic conductivity and Activation Energy

2.38 x 10-7 S/cm at 25˚C and 2.33 x 10-6 S/cm at 100˚C 
Li4P2S6 pressed pellets with blocking (Al/C) electrodes
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Simulations of ion mobility using Nudged Elastic Band Model

Vacancy 
mechanism:
DE>0.6 eV

Interstitial 
mechanism:
DE>0.1 eV

S

P

Li

Possible 
interstitial sites
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Models of Li4P2S6/Li interfaces -- Surface parallel to P-P bonds:

Surface with vacuum Surface with lithium
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Models of Li4P2S6/Li interfaces -- Surface perpendicular to P-P bonds:

Surface with vacuum Surface with lithium
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P

Li
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Conclusions:
Diffraction results are consistent with Mercier’s 

1982 analysis with disorder on P sites due to small 
energy differences of alignment of P2S6 fragments; 
remarkably temperature independent

 Small activation energy (Ea = 0.3 eV) for ion 
conductivity consistent with interstitial mechanism

 Thermal stability relative to other thio-phosphates
 Simulations of Li4P2S6/Li interfaces suggest that 

meta-stable buffer layers may be formed
 Further processing of  materials needed to improve 

conductivity and stabilize Li/Li4P2S6/Li cells


