

First principles modeling of electrolyte/anode interfaces in an all-solid state battery – γ -Li₃PS₄/Li *

N. A. W. Holzwarth, N. D. Lepley, and A. Al-Qawasmeh

Department of Physics Wake Forest University, Winston-Salem, NC, USA, 27109

*Supported by NSF Grant DMR-1105485. Computations were performed on the Wake Forest university DEAC cluster, a centrally managed resource with support provided in part by the University.

Outline Motivation Why all solid state batteries \succ Why γ -Li₃PS₄/Li Calculational methods Results $\succ \gamma$ -Li₃PS₄/Li > Other interfaces -- β -Li₃PO₄/Li, SD-Li₂PO₂N $> \gamma$ -Li₃PS₄/LiS₂/Li Summary and conclusions

Motivation – why all solid state batteries ?

- Advantages in stability, efficiency, and safety
- Promising new materials with increased conductivity

From ORNL: Experiment on electrolyte Li₃PS₄

Communication

pubs.acs.org/JACS

J. Am. Chem. Soc. 2013, 135, 975-978

Anomalous High Ionic Conductivity of Nanoporous β -Li₃PS₄

Zengcai Liu,[†] Wujun Fu,[†] E. Andrew Payzant,^{†,‡} Xiang Yu,[†] Zili Wu,^{†,§} Nancy J. Dudney,[‡] Jim Kiggans,[‡] Kunlun Hong,[†] Adam J. Rondinone,[†] and Chengdu Liang^{*,†}

Figure 5. Electrochemical stability of β -Li₃PS₄ and cycling stability with metallic lithium electrodes. (a) CV of a Li/ β -Li₃PS₄/Pt cell, where Li and Pt serve as the reference/counter and working electrodes, respectively. (b) Lithium cyclability in a symmetric Li/ β -Li₃PS₄/Li cell. The cell was cycled at a current density of 0.1 mA cm⁻² at room temperature and 80 °C.

Figure 1. Arrhenius plots for nanoporous β -Li₃PS₄ (line a), bulk β -Li₃PS₄ (line b), and bulk γ -Li₃PS₄ (line c). The conductivity data for bulk Li₃PS₄ are reproduced from the work of Tachez.¹⁰.

10/29/2013

Summary of "first-principles" calculation methods

Exact problem:

Electronic coordinates

 $\mathcal{H}(\{\mathbf{r}_i\},\{\mathbf{R}^a\})\Psi_{\alpha}(\{\mathbf{r}_i\},\{\mathbf{R}^a\}) = E_{\alpha}\Psi_{\alpha}(\{\mathbf{r}_i\},\{\mathbf{R}^a\})$

Born-Oppenheimer approximation

Born & Huang, **Dynamical Theory of Crystal Lattices**, Oxford (1954)

Density functional theory

Hohenberg and Kohn, *Phys. Rev.* **136** B864 (1964) Kohn and Sham, *Phys. Rev.* **140** A1133 (1965) Electron

Approximately equivalent problem :

Ground state energy (mean field approximation): $E_0(\mathbf{r}, \rho(\mathbf{r}), \{\mathbf{R}^a\})$

$$H_{eff}(\mathbf{r}, \rho(\mathbf{r}), \{\mathbf{R}^a\})\psi_n(\mathbf{r}) = \varepsilon_n \psi_n(\mathbf{r})$$

$$\rho(\mathbf{r}) = \sum_{10/29/201^{\frac{n}{2}}} |\psi_n(\mathbf{r})|^2 \qquad H_{eff}(\mathbf{r}, \rho(\mathbf{r}), \{\mathbf{R}^a\}) = \frac{\delta E_0(\mathbf{r}, \rho(\mathbf{r}), \{\mathbf{R}^a\})}{\delta \rho(\mathbf{r})}$$

GGA: J. Perdew, K. Burke, and M. Ernzerhof, PRL **77**, 3865 (1996) HSE06: J. Heyd, G. E. Scuseria, and M. Ernzerhof, JCP **118**, 8207 (2003)

Numerical methods:

"Muffin-tin" construction: Augmented Plane Wave developed

by Slater \rightarrow "linearized" version by Andersen:

J. C. Slater, Phys. Rev. **51** 846 (1937)

O. K. Andersen, Phys. Rev. B **12** 3060 (1975) (LAPW)

Pseudopotential methods:

J. C. Phillips and L. Kleinman, Phys. Rev. **116** 287 (1959) -- original idea P. Blöchl, Phys. Rev. B. 50 17953 (1994) – Projector Augmented Wave (PAW) method

Outputs of calculations:

Ground state energy:

 $E_0(\mathbf{r}, \rho(\mathbf{r}), \{\mathbf{R}^a\})$ $\min_{\{\mathbf{R}^a\}} \left(E_0(\mathbf{r}, \rho(\mathbf{r}), \{\mathbf{R}^a\}) \right)$

$$\Rightarrow$$
 Determine formation energies

- \Rightarrow Determine structural parameters
 - \Rightarrow Stable and meta stable structures
- \Rightarrow Normal modes of vibration
- \Rightarrow Self consistent electron density
- \Rightarrow One-electron energies; densities of states

Codes: ATOMPAW → PAW atomic data files (<u>http://pwpaw.wfu.edu</u>) ABINIT → DFT for materials (<u>http://www.abinit.org</u>) PWSCF → DFT for materials (<u>http://quantum-espresso.org</u>) VESTA → visualization (<u>http://jp-minerals.org/vesta/en</u>)

 $\rho(\mathbf{r}) = \sum_{n} |\psi_{n}(\mathbf{r})|^{2}$ $\{\varepsilon_{n}\}$

γ -Li₃PS₄ [0 1 0] surface

Simulations of ideal γ-Li₃PS₄ [0 1 0] surface in the presence of Li

Initial configuration:

Computed optimized structure:

10/29/2013

ECS 224

More simulations of ideal γ -Li₃PS₄ [0 1 0] surface in the presence of Li – supercells containing 12 Li atoms and 2 or 4 electrolyte layers

10/29/2013

11

 γ -Li₃PS₄ [0 1 0] surface in the presence of Li – supercells containing 12 Li atoms and 2 or 4 electrolyte layers (greater detail)

2 electrolyte layers

4 electrolyte layers

10/29/2013

Mystery:

Models of ideal Li₃PS₄ surfaces are computational found to be structurally (and chemically) altered by the presence of Li metal. (Also found for β-Li₃PS₄ and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid Li₃PS₄ electrolyte samples can be prepared in Li/Li₃PS₄/Li cells and cycled many times

Computational counter example – stable interface: Li/β-Li₃PO₄

○ Li ● N

0 ●

OS

10/29/2013

Computational counter example – stable interface: Li/SD-Li₂PO₂N

10/29/2013

WAKE FOREST

UNIVERSITY

Back to mystery:

Models of ideal Li₃PS₄ surfaces are computational found to be structurally (and chemically) altered by the presence of Li metal. (Also found for β-Li₃PS₄ and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid Li₃PS₄ electrolyte samples can be prepared in

Li/ Li_3PS_4/Li cells and cycled many times.

Possible solution:

Thin protective buffer layer at Li₃PS₄ surface can stabilize electrolyte – for example Li₂S/Li₃PS₄/Li₂S

Idealized Li₂S/Li₃PS₄/Li₂S system

Details:

Thin film of cubic Li_2S oriented in its non-polar [1 1 0] direction, optimized on [0 1 0] surface of γ -Li₃PS₄. While the Li₂S film was slightly strained, the binding energy of the composite was found to be stable with a binding energy of -0.9 eV.

Idealized Li₂S/Li₃PS₄/Li₂S system optimized in presence of Li

Summary and conclusions:

- Models of ideal Li₃PO₄ and Li₂PO₂N surfaces are computational found to structurally stable in the presence of Li metal.
- Models of ideal Li₃PS₄ surfaces are computational found to be structurally (and chemically) altered by the presence of Li metal. (Also found for β-Li₃PS₄ and for various initial configurations of Li metal.)
- Thin protective buffer layer of Li₂S at Li₃PS₄ surface can stabilize electrolyte; Li₂S/Li₃PS₄/Li₂S is found to be stable in the presence of Li metal.
- Experimentally, the ORNL samples of solid Li₃PS₄ electrolyte, prepared in Li/Li₃PS₄/Li cells and cycled many times, may form thin buffer layer in first few cycles.