

Overview of Computer Simulation Methods Used to Study and Design New Materials: Examples from the Study of Solid Electrolytes*

N. A. W. Holzwarth**

Department of Physics Wake Forest University, Winston-Salem, NC, USA, 27109

*Supported by NSF Grant DMR-1105485 and WFU's Center for Energy, Environment, and Sustainability.

**With help from: Nicholas Lepley, Ahmad Al-Qawasmeh, Jason Howard, and Larry Rush (physics graduate students), Yaojun Du (previous physics postdoc) and colleagues from WFU chemistry department – Dr. Keerthi Senevirathne, Dr. Cynthia Day, Professor Michael Gross, Professor Abdessadek Lachgar, and Zachary Hood (currently at ORNL)

Outline

- Overview of computational methods
 - > What is meant by "first principles"?
 - Evaluation of computational results and comparison with reality
- > Why are we interested in solid electrolytes?
- How can computer simulations help?
 - Survey of known solid electrolytes
 - Prediction of new solid electrolytes
 - Study of electrolyte/electrode interfaces
- Remaining challenges

What is meant by "first principles" simulation methods?

A series of well-controlled approximations

Summary of "first-principles" calculation methods

Exact Schrödinger equation:

Electronic coordinates Atomic coordinates

 $\mathcal{H}(\{\mathbf{r}_i\},\{\mathbf{R}^a\})\Psi_{\alpha}(\{\mathbf{r}_i\},\{\mathbf{R}^a\}) = E_{\alpha}\Psi_{\alpha}(\{\mathbf{r}_i\},\{\mathbf{R}^a\})$

where

$$\mathcal{H}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\}) = \mathcal{H}^{\text{Nuclei}}(\{\mathbf{R}^a\}) + \mathcal{H}^{\text{Electrons}}(\{\mathbf{r}_i\}, \{\mathbf{R}^a\})$$

Born-Oppenheimer approximation Born & Huang, Dynamical Theory of Crystal Lattices, Oxford (1954)

Approximate factorization:

$$\Psi_{\alpha}(\{\mathbf{r}_i\},\{\mathbf{R}^a\}) = X_{\alpha}^{\text{Nuclei}}(\{\mathbf{R}^a\})\Upsilon_{\alpha}^{\text{Electrons}}(\{\mathbf{r}_i\},\{\mathbf{R}^a\})$$

Summary of "first-principles" calculation methods -- continued Electronic Schrödinger equation:

 $\mathcal{H}^{\text{Electrons}}(\{\mathbf{r}_i\},\{\mathbf{R}^a\})\Upsilon_{\alpha}^{\text{Electrons}}(\{\mathbf{r}_i\},\{\mathbf{R}^a\}) = U_{\alpha}(\{\mathbf{R}^a\})\Upsilon_{\alpha}^{\text{Electrons}}(\{\mathbf{r}_i\},\{\mathbf{R}^a\})$ $\mathcal{H}^{\text{Electrons}}(\{\mathbf{r}_i\},\{\mathbf{R}^a\}) = -\frac{\hbar^2}{2m} \sum_i \nabla_i^2 - \sum_{a,i} \frac{Z^a e^2}{|\mathbf{r}_i - \mathbf{R}^a|} + \sum_{i \le i} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_i|}$ **Density functional theory** Hohenberg and Kohn, Phys. Rev. 136 B864 (1964) Kohn and Sham, Phys. Rev. 140 A1133 (1965) Electron For electronic ground state: $\alpha \Rightarrow 0$ density Mean field approximation: $U_0(\{\mathbf{R}^a\}) \Rightarrow U_0(\{\rho(\mathbf{r})\}, \{\mathbf{R}^a\})$ $\mathcal{H}_{\mathrm{KS}}^{\mathrm{Electrons}}(\mathbf{r},\rho(\mathbf{r}),\{\mathbf{R}^{a}\})\psi_{n}(\mathbf{r}) = \varepsilon_{n}\psi_{n}(\mathbf{r}) \qquad \rho(\mathbf{r}) = \sum_{n} |\psi_{n}(\mathbf{r})|^{2}$ Independent electron wavefunction

GGA: J. Perdew, K. Burke, and M. Ernzerhof, PRL **77**, 3865 (1996) HSE06: J. Heyd, G. E. Scuseria, and M. Ernzerhof, JCP **118**, 8207 (2003)

Numerical methods:

"Muffin-tin" construction: Augmented Plane Wave developed

by Slater \rightarrow "linearized" version by Andersen:

J. C. Slater, Phys. Rev. **51** 846 (1937)

O. K. Andersen, Phys. Rev. B **12** 3060 (1975) (LAPW)

Pseudopotential methods:

J. C. Phillips and L. Kleinman, Phys. Rev. **116** 287 (1959) -- original idea P. Blöchl, Phys. Rev. B. 50 17953 (1994) – Projector Augmented Wave (PAW) method

Outputs of calculations:

Ground state energy:

$$U_0(\left\{
ho(\mathbf{r})
ight\}, \{\mathbf{R}^a\})$$

 $\min\Big|_{\{\mathbf{R}^a\}}\Big(U_0(\{\rho(\mathbf{r})\},\{\mathbf{R}^a\})\Big)$

$$\Rightarrow$$
 Determine formation energies

- \Rightarrow Determine structural parameters
- \Rightarrow Stable and meta-stable structures
- \Rightarrow Normal modes of vibration

$$\Rightarrow$$
 Self-consistent electron density

$$\Rightarrow$$
 One-electron energies; densities of states

 $\rho(\mathbf{r}) = \sum_{n} |\psi_{n}(\mathbf{r})|^{2}$ $\{\varepsilon_{n}\}$

Public domain codes available for electronic

structure calculations

Method	Codes	Comments
LAPW	<u>www.wien2k.at</u> <u>elk.sourceforge.net</u>	Works well for smaller unit cells; variable unit cell optimization not implemented. Need to choose non- overlapping muffin tin radii and avoid "ghost" solutions.
PAW	<u>www.abinit.org</u> www.quantum-espresso.org	Works well for large unit cells (<200 atoms or so); includes variable unit cell optimization.
ATOMPAW	<u>pwpaw.wfu.edu</u>	Generates PAW datasets for <i>abinit</i> and <i>quantum-espresso</i> (and other codes)

Other efforts:

- Gerbrand Ceder's group at MIT Materials Project; A Materials Genome Approach -- <u>http://www.materialsproject.org/</u>
- Stefano Curtarolo's group at Duke Energy Materials Laboratory --<u>http://materials.duke.edu/</u>

ATOMPAW Code for generating atomic datasets for PAW calculations

Holzwarth, Tackett, and Matthews, CPC 135 329 (2001) http://pwpaw.wfu.edu

ATOMPAW

Download source code and example files:

- <u>atompaw-4.0.0.12.tar.gz</u> (5.4mb) 12/23/2014: Slight update of <u>new</u> <u>version</u> of atompaw code. In additon to previous <u>updates</u>, added PBESOL output for Quantum Espresso interface and added interface for SOCORRO.
- <u>atompaw-3.1.0.3.tar.gz</u> (3.8mb) Updated version of *atompaw* code (01/03/2014 and 09/18/2013 -- Marc Torrent and Francois Jollet introduced improvements to the XML and abinit dataset generation routines; 07/09/2013 -- Marc Torrent introduced small corrections; 06/22/2013 -- Marc Torrent and Francois Jollet added a new option for outputting a file in XML format according to the specifications set up by the GPAW group. The output file format is controled by a menu at

2 1 H He 3 4 5 6 8 9 10 Be в С Ν 0 F Li Ne 15 17 18 13 14 16 11 12 Mg Al Si Р S Cl Na Ar <u>19</u> <u>22</u> <u>Ti</u> <u>23</u> <u>V</u> <u>24</u> <u>Cr</u> 25 26 Mn Fe <u>27</u> <u>Co</u> <u>28</u> Ni <u>31</u> 32 33 34 35 36 <u>20</u> <u>29</u> <u>30</u> <u>21</u> K Cu Zn Ga Ge Ca Sc As Se Br Kr 37 39 42 44 45 47 48 53 54 38 40 41 43 46 49 <u>50</u> 51 52 Y Rb Sr Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te T Xe 55 72 77 80 81 82 85 86 73 74 75 76 78 79 83 84 56 Os Ir Pt Au Hg Tl Pb Bi Cs Ba Hf Ta W Re Po At Rn

"Small Core" Datasets for PAW Functions

"Large Core" Datasets for PAW Functions

1 H																	2 He
3 Li	4 Be											<u>5</u> <u>B</u>	<u>6</u> <u>C</u>	<u>7</u> <u>N</u>	<u>8</u> <u>0</u>	<u>9</u> <u>F</u>	10 Ne
11 Na	12 Mg											<u>13</u> <u>Al</u>	<u>14</u> <u>Si</u>	<u>15</u> <u>P</u>	<u>16</u> <u>S</u>	<u>17</u> <u>Cl</u>	18 Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	<u>33</u>	<u>34</u>	<u>35</u>	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	<u>As</u>	<u>Se</u>	<u>Br</u>	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56		72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn

What do computer simulations have to do with reality?

Example comparison of computational results with experimental measurements --

Li₃PO₄ crystals

 γ -Li₃PO₄

(Pnma)

Seminar at JSNN

Validation of calculations **W** UNIVERSIT **Raman spectra – Experiment & Calculation**

γ -Li₃PO₄

β -Li₃PO₄

A: B. N. Mavrin et al, J. Exp. Theor. Phys. **96**,53 (2003); B: F. Harbach and F. Fischer, Phys. Status Solidi B **66**, 237 (1974) – room temp. C: Ref. B at liquid nitrogen temp.; D: L. Popović et al, J. Raman Spectrosc. **34**,77 (2003).

Estimate of ionic conductivity assuming activated hopping

Schematic diagram of minimal energy path

Approximated using NEB algorithm a

^aHenkelman and Jónsson, JCP 113, 9978 (2000)

Arrhenius relation

 $\sigma \cdot T = K \mathrm{e}^{-E_A/kT}$

From: Ivanov-Shitz and co-workers, Cryst. Reports 46, 864 (2001):

Fig. 2. Temperature dependences of conductivity in γ -Li₃PO₄: (*1*–3) for single crystals measured along the (*1*) *a*-axis, (*2*) *b*-axis, (*3*) *c*-axis and (*4*, 5) for a polycrystal (*4*) according to [4, 5] and (5) according to [7].

 $E_A = 1.14, 1.23, 1.14, 1.31, 1.24$ eV for 1,2,3,4,5, respectively.

>What is meant by "first principles"?

A series of well-controlled approximations

- Born-Oppenheimer Approximation
- Density Functional Approximation
- □ Local density Approximation (LDA)
- □ Numerical method: Projector Augmented Wave

Validation

- Lattice vibration modes
- Heats of formation
- □ Activation energies for lattice migration

>What is the interest in solid electrolytes?

Materials components of a Li ion battery

1/16/2015

Example: Thin-film battery developed by Nancy Dudney and collaborators at Oak Ridge National Laboratory – **LiPON** (lithium phosphorus oxinitride)

FIG. 1. Schematic cross section of a thin film battery fabricated by vapor deposition onto both sides of a substrate support.

FIG. 2. Schematic illustration of a thin film battery. The arrows indicate the discharge reaction where a Li ion diffuses from the lithium metal anode to fill a vacancy in an intercalation compound that serves as the cathode. The compensating electron is conducted through the device.

From: N. J. Dudney, Interface 77(3) 44 (2008)

Solid vs liquid electrolytes in Li ion batteries

Solid electrolytes

Advantages

- Excellent chemical and physical stability.
- 2. Perform well as thin film ($\approx 1\mu$)
- Li⁺ conduction only (excludes electrons).

Disadvantages

- Reduced contact area for high capacity electrodes.
- 2. Interface stress due to electrode charging and discharging.
- 3. Relatively low ionic conductivity.

Liquid electrolytes

Advantages

- 1. Excellent contact area with high capacity electrodes.
- 2. Can accommodate size changes of electrodes during charge and discharge cycles.
- 3. Relatively high ionic conductivity.

Disadvantages

- Relatively poor physical and chemical stability.
- 2. Relies on the formation of "solid electrolyte interface" (SEI) layer.
- May have both Li⁺ and electron conduction.

1/16/2015

From MRS Bulletin 39 1046-1049 Dec. 2014 Arthur Robinson and Jürgen Janek

"All-solid-state batteries are an emerging option for next-generation technologies"

1/16/2015

Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

Figure 3 | Thermal evolution of ionic conductivity of the new $Li_{10}GeP_2S_{12}$ phase, together with those of other lithium solid electrolytes, organic liquid electrolytes, polymer electrolytes, ionic liquids and gel electrolytes^{3-8,13-16,20,22}. The new $Li_{10}GeP_2S_{12}$ exhibits the highest lithium ionic conductivity (12 m S cm⁻¹ at 27 °C) of the solid lithium conducting membranes of inorganic, polymer or composite systems. Because organic electrolytes usually have transport numbers below 0.5, inorganic lithium electrolytes have extremely high conductivities.

Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

How can computer simulations contribute to the development of materials?

- Computationally examine known materials and predict new materials and their properties
 - Structural forms
 - Relative stabilities
 - Direct comparisons of simulations and experiment
 - Investigate properties that are difficult to realize experimentally

Of particular interest in battery materials --

- Model ion migration mechanisms
 - Vacancy migration
 - Interstitial migration
 - Vacancy-interstitial formation energies

The Li₂PO₂N story

Table 1. Calculated heats of formation for Li phosphates, phospho-nitrides, and thiophosphates and related materials. The structural designation uses the the notation defined in the International Table of Crystallography⁸⁵ based on structural information reported in the International Crystal Structure Database.⁸⁶ The heats of formation ΔH (eV/FU) are given in units of eV per formula unit. When available from Ref. [31] and [32] experiment values are indicated in parentheses. Those indicated with "*" were used fitting the O and N reference energies as explained in the text.

Material	Structure	$\Delta H ~(eV/FU)$		20	
β-Li ₃ PO ₄	$Pmn2_1$ (#31)	-21.23	Material	Structure	$\Delta H (eV/FU)$
γ -Li ₃ PO ₄	Pnma (#62)	-21.20 (-21.72*)	N_2O_5	$P6_3/mmc \ (\#194)$	- 0.94 (- 0.45*)
γ -Li ₃ PS ₄	$Pmn2_1$ (#31)	- 8.37	P_3N_5	C2/c (#15)	- 3.02 (- 3.32*)
β -Li ₃ PS ₄	Pnma (#62)	- 8.28	h-P2O5	R3c (#161)	-15.45 (-15.53*)
			o-P2O5	Fdd2 (#43)	-15.78
$Li_4P_2O_6$	$P\bar{3}1m~(\#162)$	-29.72	P_2S_5	$P\bar{1}$ (#2)	- 1.93
$Li_4P_2O_7$	$P\bar{1}$ (#2)	-33.97	P_4S_3	Pnma (#62)	- 2.45 (- 2.33)
$Li_5P_2O_6N$	$P\bar{1}$ (#2)	-33.18	SO ₃	$Pna2_1$ (#33)	- 4.84 (- 4.71*)
$Li_4P_2S_6$	$P\bar{3}1m~(\#162)$	-12.42		2013 D	
$Li_4P_2S_7$	$P\bar{1}$ (#2)	-11.59	Li ₃ N	P6/mmm (#191)	- 1.60 (- 1.71*)
			Li_2O	$Fm\bar{3}m~(\#225)$	- 6.10 (- 6.20*)
Li ₇ P ₃ O ₁₁	$P\bar{1}$ (#2)	-54.84	Li_2O_2	$P6_3/mmc$ (#194)	- 6.35 (- 6.57*)
Li7P3S11	$P\bar{1}$ (#2)	-20.01	Li ₃ P	$P6_3/mmc$ (#194)	- 3.47
			Li_2S	$Fm\bar{3}m~(\#225)$	- 4.30 (- 4.57)
LiPO ₃	P2/c (#13)	-12.75	Li_2S_2	$P6_3/mmc$ (#194)	- 4.09
LiPN ₂	$I\bar{4}2d$ (#122)	- 3.65			
$s1-Li_2PO_2N$	Pbcm (#57)	-12.35	LiNO ₃	$R\bar{3}c$ (#167)	- 5.37 (- 5.01*)
SD-Li ₂ PO ₂ N SD-Li ₂ PS ₂ N	$Cmc2_1 (#36)$ $Cmc2_1 (#36)$	-12.47 - 5.80	Li_2SO_4	$P2_1/c$ (#14)	-14.63 (-14.89*)

Phosphate chain materials: LiPO₃ plus N

LiPO₃ in P2/c structure; 100 atom unit cell Chain direction perpendicular to plane of diagram

s₁-Li₂PO₂N in *Pbcm* structure; 24 atom unit cell Chain direction perpendicular to plane of diagram

Two forms of Li₂PO₂N

Comparison of synthesized and predicted structures of Li₂PO₂N:

Synthesized

Predicted

Calculations have now verified that the SD structure is more stable than the s_2 structure by 0.1 eV/FU.

1/16/2015

Comparison of synthesized Li₂PO₂N with Li₂SiO₃

SD-Li₂PO₂N (Cmc2₁)

a=9.07 Å, b=5.40 Å, c=4.60 Å

Seminar at JSNN

Si

 Li_2SiO_3 (Cmc2₁)

a=9.39 Å, b=5.40 Å, c=4.66 Å K.-F. Hesse, Acta Cryst. B33, 901 (1977)

1/16/2015

Electronic band structure of SD-Li₂PO₂N

More details of SD-Li₂PO₂N structure

Ball and stick model

Note: no structural changes were observed while heating in vacuum up to 1050° C.

NEB analysis of E_m (vacancy mechanism)

Ionic conductivity of SD-Li₂PO₂N

Summary of measured and calculated conductivity parameters in $Li_x PO_y N_z$ materials

Measured activation energies E_A^{exp} compared with calculated migration energies for vacancy (E_m^{cal} (vac.)) and interstitial (E_m^{cal} (int.)) mechanisms and vacancy-interstitial formation energies (E_f^{cal}). All energies are given in eV.

Material	Form	E_A^{\exp}	E_m^{cal} (vac.)	E_m^{cal} (int.)	E_f^{cal}	$E_A^{\rm cal}$
γ -Li ₃ PO ₄	single crystal ^a	1.23, 1.14	0.7, 0.7	0.4, 0.3	1.7	1.3, 1.1
Li _{2.88} PO _{3.73} N _{0.14}	poly cryst.	0.97				
Li _{3.3} PO _{3.9} N _{0.17}	amorphous	0.56				
Li _{1.35} PO _{2.99} N _{0.13}	amorphous	0.60				
LiPO ₃	poly cryst.	1.4	0.6, 0.7	0.7	1.2	1.1-1.2
LiPO ₃	amorphous	0.76-1.2				
s_1 -Li ₂ PO ₂ N	single crystal		0.5, 0.6		1.7	1.3-1.5
LiPN ₂	poly cryst.	0.6	0.4		2.5	1.7
Li ₇ PN ₄	poly cryst.	0.5				

Summary of the Li₂PO₂N story

Predicted on the basis of first principles theory

- Subsequently, experimentally realized by Keerthi Seneviranthe and colleagues; generally good agreement between experiment and theory
- □ Ion conductivity properties not (yet) competitive

Simulations of other solid electrolytes and electrolyte/electrode interfaces

Anomalous High Ionic Conductivity of Nanoporous β -Li₃PS₄

Zengcai Liu,[†] Wujun Fu,[†] E. Andrew Payzant,^{†,‡} Xiang Yu,[†] Zili Wu,^{†,§} Nancy J. Dudney,[‡] Jim Kiggans,[‡] Kunlun Hong,[†] Adam J. Rondinone,[†] and Chengdu Liang^{*,†}

Figure 5. Electrochemical stability of β -Li₃PS₄ and cycling stability with metallic lithium electrodes. (a) CV of a Li/ β -Li₃PS₄/Pt cell, where Li and Pt serve as the reference/counter and working electrodes, respectively. (b) Lithium cyclability in a symmetric Li/ β -Li₃PS₄/Li cell. The cell was cycled at a current density of 0.1 mA cm⁻² at room temperature and 80 °C.

Figure 1. Arrhenius plots for nanoporous β -Li₃PS₄ (line a), bulk β -Li₃PS₄ (line b), and bulk γ -Li₃PS₄ (line c). The conductivity data for bulk Li₃PS₄ are reproduced from the work of Tachez.¹⁰.

1/16/2015

γ -Li₃PS₄ [0 1 0] surface

Simulations of ideal γ-Li₃PS₄ [0 1 0] surface in the presence of Li

Initial configuration:

Computed optimized structure:

1/16/2015

Seminar at JSNN

More simulations of ideal γ -Li₃PS₄ [0 1 0] surface in the presence of Li – supercells containing 12 Li atoms and 2 or 4 electrolyte layers

1/16/2015

46

1/16/2015

 γ -Li₃PS₄ [0 1 0] surface in the presence of Li – UNI supercells containing 12 Li atoms and 2 or 4 electrolyte layers (greater detail)

2 electrolyte layers

4 electrolyte layers

Mystery:

Models of ideal Li₃PS₄ surfaces are computational found to be structurally (and chemically) altered by the presence of Li metal. (Also found for β-Li₃PS₄ and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid Li₃PS₄ electrolyte samples can be prepared in Li/Li₃PS₄/Li cells and cycled many times

Computational counter example – stable interface: Li/β-Li₃PO₄

● Li

0

1/16/2015

Seminar at JSNN

Computational counter example – stable interface: Li/SD-Li₂PO₂N

1/16/2015

WAKE FOREST

UNIVERSITY

Back to mystery:

Models of ideal Li₃PS₄ surfaces are computational found to be structurally (and chemically) altered by the presence of Li metal. (Also found for β-Li₃PS₄ and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid Li₃PS₄ electrolyte samples can be prepared in Li/Li₃PS₄/Li cells and cycled many times.

Possible solution:

Thin protective buffer layer at Li₃PS₄ surface can stabilize electrolyte – for example Li₂S/Li₃PS₄/Li₂S

Idealized Li₂S/Li₃PS₄/Li₂S system

Details:

Thin film of cubic Li_2S oriented in its non-polar [1 1 0] direction, optimized on [0 1 0] surface of γ -Li₃PS₄. While the Li₂S film was slightly strained, the binding energy of the composite was found to be stable with a binding energy of -0.9 eV.

Idealized Li₂S/Li₃PS₄/Li₂S system optimized in presence of Li

Summary of the interface simulations:

- Models of ideal Li₃PO₄ and Li₂PO₂N surfaces are computational found to structurally stable in the presence of Li metal.
- Models of ideal Li₃PS₄ surfaces are computational found to be structurally (and chemically) altered by the presence of Li metal. (Also found for β-Li₃PS₄ and for various initial configurations of Li metal.)
- Thin protective buffer layer of Li₂S at Li₃PS₄ surface can stabilize electrolyte; Li₂S/Li₃PS₄/Li₂S is found to be stable in the presence of Li metal.
- Experimentally, the ORNL samples of solid Li₃PS₄ electrolyte, prepared in Li/Li₃PS₄/Li cells and cycled many times, may form thin buffer layer in first few cycles.

Additional thoughts

- Limitations of first principles modeling
 - □ Small simulation cells
 - **Zero temperature**
- Possible extensions
 - Develop approximation schemes for treatment of larger supercells
 - Use molecular dynamics and/or Monte Carlo techniques
- Ideal research effort in materials includes close collaboration of both simulations and experimental measurements.
- For battery technology, there remain many opportunities for new materials development.