

Introduction

- Solid-state lithium ion electrolytes such as Li_3PO_4 -based materials¹ are becoming increasingly important in batteries and related technologies.
- Li ion diffusion in crystalline γ -Li₃PO₄ has been measured to be slightly anisotropic with activation energies of 1.1–1.3 eV.² The activation energies can be reduced to 0.97 eV by N doping¹ and to 0.5 eV by admixture with Li_4SiO_4 .³
- In this work, first-principles calculations⁴ have been performed to model the migration energies for both vacancy and interstitial mechanisms of Li ions in γ -Li₃PO₄ and β -Li₃PO₄. For extrinsic defects, activation energy E_A is the same as the migration energy of the defects, E_m . However, for intrinsic defects, using quasi-equilibrium statistical mechanics arguments,⁵ it follows that $E_A = 1$ $E_m + E_f/2$, where E_f is the formation energy of the vacancy-interstitial pair.

Crystal structures

 γ -Li₃PO₄ Space group: Pnma Metastable at room temperature; experimentally measured. The Li ions are located on two crystallographically different sites indicated with different shadings (gray and dark balls) in the figure. Using the Wyckoff labels, the d site accounts for 8 equivalent atomic sites and the c site accounts for 4 equivalent atomic sites per unit cell. The P and O ions are indicated by small balls and sticks (colored yellow and blue respectively).

 β -Li₃PO₄ Space group: Pmn2₁ Low-temperature phase and energetically more stable than γ -phase. Two crystallographically distinct Li sites are also indicated with different shadings in the figure. Using the Wyckoff labels, the b site accounts for 4 equivalent atomic sites and the asite accounts for 2 equivalent atomic sites per unit cell. Our calculations verify that the β form is energetically more stable: $E_{\gamma} - E_{\beta} = 0.03(0.01)$ eV/Li_3PO_4 for LDA (GGA) calculations.

Raman spectra

LDA calculations show better agreement with experimental spectra than GGA; simulation results in this poster are presented for the LDA functional unless otherwise specified.

Raman active modes of γ -Li₃PO₄, comparing experimental results with LDA and GGA calculations. Experiment A (from Ref. 6) was measured at room temperature (RT). Experiment B and C (from Ref. 7) were measured at RT and liquid nitrogen temperature (LNT), respectively. Experiment D (from Ref. 8) was measured at LNT.

Raman active modes of β -Li₃PO₄, comparing experimental results with LDA and GGA calculations. Experimental data (from Ref. 8) were measured at LNT.

Li ion diffusion mechanisms in Li₃PO₄ electrolytes

Yaojun Du and N. A. W. Holzwarth

Department of Physics, Wake Forest University, Winston-Salem, NC, USA

Supported by NSF grants DMR-0405456 and 0427055.

Energy path diagrams for various vacancy migration paths in crystalline Li₃PO₄, showing minimal barriers of 0.62 eV along the c-axis path for the γ form and 0.55 eV along the b-axis path for the β form. These barriers are 0.3 eV lower than the measured activation energy for vacancy-rich $Li_{2.88}PO_{3.73}N_{0.14}$,¹ where oxygen-vacancies may affect the migration barrier.

Intrinsic defects

The formation energies of interstitial-vacancy pairs are found to be $E_f(\gamma) = 1.7$ eV and $E_f(\beta) = 1.7$ 2.1 eV. Estimating the intrinsic activation energy as $E_A = E_m$ (interstitial) + $E_f/2$, we obtain good agreement with experiment. 2

Crystal	Net direction	Experiment (eV)	This work (eV)
γ -Li $_3$ PO $_4$	a	1.23	1.1
	\mathbf{b}	1.14	1.1
	С	1.14	1.1
β-Li ₃ PO ₄	b		1.6
	a		1.4
	С		1.4

Vacancy mechanism

- [1] B. Wang et al., Journal of Solid State Chemistry 115, 313 (1995)
- [2] A. K. Ivanov-Shitz et al., Crystallography Reports 46, 864 (2001).
- [3] Y.-W.Hu et al., Journal of the Electrochemical society **124**, 1240 (1977).
- [4] *PWscf* http://www.pwscf.org.

- [8] L. Popović et al., Journal of Raman Spectroscopy 34, 77 (2003).

Interstitial migration paths show the most efficient ion transport mechanism for both γ - and β -Li₃PO₄, with computed migration barriers of 0.3–0.5 eV, in good agreement with the measured 0.5 eV activation energy of extrinsic interstitials for Li_4SiO_4 - Li_3PO_4 solid solutions.³ Structural diagrams show meta-stable interstitial sites I and II located in the two distinct void channels for both crystals.

Reference

[5] A. R. West, Basic Solid State Chemistry, Second Edition (John Wiley & Sons, Inc. 2000) [6] B. N. Mavrin et al., Journal of Experimental and Theoretical Physics 96, 53 (2003). [7] F. Harbach and F. Fischer, *Physica Status Solidi B* 66, 237 (1974).