Implementation of the Optimized Effective Potential Method within Projector Augmented Wave Scheme

Xiao Xu and N. A. W. Holzwarth

Wake Forest University

March 18, 2009

Supported by NSF grants DMR-0405456, 0427055, and 0705239.
Helpful discussion with Leeor Kronik are gratefully acknowledged.
Motivation

1. The optimized effective potential (OEP) or exact exchange (EXX) formalism is a method which can improve the accuracy of DFT because its ability to avoid self-interaction contributions and more generally treat orbital-dependent functionals.

2. The Projector Augmented Wave (PAW) formalism is an efficient pseudopotential-like scheme, which allows for an accurate treatment of the multipole moments in the Hartree and Exchange interactions, making it a natural choice for implementing OEP.

Outline of Talk

1. Explain a OEP Gradient Search Algorithm (R. A. Hyman et al, PRB 62, 15521 (2000)).

2. Explain a Frozen Core + OEP Gradient Search Algorithm that we developed, with focus on:

 Decoupling of valence and core orbital contributions

3. In the end, explain our PAW + OEP Gradient Search algorithm. Show some early results.
Main equations

Starting With Kohn-Sham equation:

\[\left\{ -\frac{\hbar^2}{2m} \nabla^2 + V_s(r) \right\} \phi_n(r) = \epsilon_n \phi_n(r) \]

where

\[V_s(r) = V_N(r) + V_H(r) + V_{xc}(r) \]

and the local exchange potential is defined as:

\[V_{xc}(r) = \frac{\partial E_{xc}[\{\phi_n\}]}{\partial n(r)}. \]

The total energy is given by:

\[E_{tot}[n] = E_T[n] + E_N[n] + E_H[n] + E_{xc}[\{\phi_n(r)\}]. \]

For the exchange-correlation energy \(E_{xc} \), we use the **exact exchange functional**, and at this moment, we set \(E_c = 0 \)

Exact Exchange Functional (EXX)

\[
E_x[\{\phi_n(r)\}] = -\frac{e^2}{2} \sum_{nm} \Theta_n \Theta_m \delta_{\sigma_m \sigma_n} \int d^3r \int d^3r' \phi_n^*(r) \phi_m^*(r') \phi_n(r') \phi_m(r) \frac{1}{|r-r'|}
\]

Because the exact exchange energy is orbital dependent, determining local potential \(V_x(r) = \frac{\partial E_x[\{\phi_k\}]}{\partial n(r)} \) involves solving integral equations. Alternatively, \(V_x(r) \) can be solved by minimizing the energy with constraints, suggested by Hyman, Stiles and Zangwill (PRB 62, 15521 (2000)) and Kümmel Perdew (PRL 90, 043004 (2003))

Xiao Xu and N. A. W. Holzwarth
Hyman suggested that the OEP object function F to be minimized can be constructed from the total energy and constraint relations.

All Electron OEP Object Function

$$F^{AE} = E_{tot}[\{\phi_n\}] - \sum_n \lambda_n (\langle \phi_n | \phi_n \rangle - 1) - \sum_n \langle g_n | H_{ks} - \epsilon_n | \phi_n \rangle$$

1. λ_n Lagrangian multiplier \leftarrow Normalization Constraint
2. $g_n(r)$ Lagrangian multiplier function(Auxiliary Function) \leftarrow KS equation Constraint
3. $g_n(r), \lambda_n, \phi_n(r), \epsilon_n, v_x(r)$ independent variables(functions)

For the Frozen Core treatment, only valence orbitals $\phi_v(r)$ are treated variationally, and orbitals associated with core states $\phi_c(r)$ are "frozen" at their reference configuration.

Frozen Core OEP Object Function

$$F^{FC} = E_{tot}[\{\phi_v\}] - \sum_v \lambda_v (\langle \phi_v | \phi_v \rangle - 1) - \sum_v \langle g_v | H_{ks} - \epsilon_v | \phi_v \rangle$$

Xiao Xu and N. A. W. Holzwarth
Gradient Search Algorithm: All Electron And Frozen Core

AE Gradient Search

AE KS Equation Constraint

\[
\frac{\partial F}{\partial g_n^*(r)} = 0 \rightarrow (\epsilon_n - H_{KS})\phi_n = 0
\]

All Electron Shift Function

\[
s(r) = \frac{\partial F}{\partial V_x} = -\sum_n (g_n^*(r)\phi_n(r) + c.c) \rightarrow \text{Update} V_x
\]

All Electron Auxiliary Function

\[
(H_{KS} - \epsilon_n) g_n(r) = \frac{\partial E_x}{\partial \phi_n^*(r)} - V_x\phi_n(r) - U_n\phi_n(r)
\]

Orthogonalization Constraints

\[
\frac{\partial F}{\partial \epsilon_n} = 0 \rightarrow \langle g_n | \phi_n \rangle = 0
\]

FC Gradient Search

FC KS Equation Constraint

\[
\frac{\partial F}{\partial g_v^*(r)} = 0 \rightarrow (\epsilon_v - H_{KS})\phi_v = 0
\]

Frozen core Shift Function

\[
s(r) = \frac{\partial F}{\partial V_x^{\text{valence}}} = -\sum_v (g_v^*(r)\phi_v(r) + c.c)
\]

Frozen core Auxiliary Function

\[
(H_{ks} - \epsilon_v) g_v(r) = \frac{\partial (E_x^{\text{valence}})}{\partial \phi_v^*} - V_x^{\text{valence}}\phi_v(r) - U_v\phi_v(r)
\]

Orthogonalization Constraints

\[
\frac{\partial F}{\partial \epsilon_v} = 0 \rightarrow \langle g_v | \phi_v \rangle = 0
\]
How to decouple the differential equation for the auxiliary function:

AE Auxiliary Function

\[(H_{KS} - \epsilon_n)g_n(r) = \frac{\partial E_x}{\partial \phi_n^*(r)} - V_x\phi_n(r) - U_n\phi_n(r)\]

Energy and Orbitals

\[
\phi_n(r) \rightarrow \phi_c(r), \phi_v(r) \\
E_x \rightarrow E_x^{c-c} + E_x^{v-c} + E_x^{v-v}
\]

Derivatives

\[
\frac{\partial E_x}{\partial \phi_n^*(r)} \rightarrow \frac{\partial E_x^{c-c}}{\partial \phi_c^*(r)}, \frac{\partial E_x^{c-v}}{\partial \phi_c^*(r)}, \frac{\partial E_x^{c-v}}{\partial \phi_v^*(r)}, \frac{\partial E_x^{v-v}}{\partial \phi_v^*(r)}
\]

Auxiliary Function: Core and Valence

\[(H_{KS} - \epsilon_n)g_n(r) \rightarrow \left\{ \begin{array}{l}
(H_{KS} - \epsilon_c)g_c(r) \\
(H_{KS} - \epsilon_v)g_v(r)
\end{array} \right.\]

Exchange Potential Partitioning

\[V_x(r) = V_x^{\text{core}}(r) + V_x^{\text{vale}}(r)\]
Gradient Search Algorithm
All Electron And Frozen Core

How to decouple the differential equation for the auxiliary function:

AE Auxiliary Function

\[
(H_{KS} - \varepsilon_n)g_n(r) = \frac{\partial E_x}{\partial \phi_n^*(r)} - V_x \phi_n(r) - U_n \phi_n(r)
\]

Frozen core Auxiliary Function

\[
(H_{KS} - \varepsilon_v)g_v(r) = \frac{\partial (E_x^v - v)}{\partial \phi_v^*} - V_x^{vale} \phi_v(r) - U_v \phi_v(r)
\]

Frozen core Shift Function

\[
s(r) = \frac{\partial F}{\partial V_x^{vale}} = - \sum_v (g_v^*(r)\phi_v(r) + c.c) \rightarrow Update V_x^{vale}
\]
Motivation and Outline
PAW OEP Formalism and Implementation
Conclusion

All Electron And Frozen core OEP
PAW + OEP

AE results: Ground State Energy

Total ground-state energies for H through Ar (Ry)

<table>
<thead>
<tr>
<th>Atom</th>
<th>Present Work</th>
<th>Previous Work⁽ᵃ⁾</th>
<th>SUHF⁽ᵃ⁾</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>-1.0000</td>
<td>-1.000</td>
<td>-1.000</td>
</tr>
<tr>
<td>He</td>
<td>-5.7234</td>
<td>-5.7234</td>
<td>-5.7234</td>
</tr>
<tr>
<td>Li</td>
<td>-14.8647</td>
<td>-14.8650</td>
<td>-14.8656</td>
</tr>
<tr>
<td>Be</td>
<td>-29.1449</td>
<td>-29.1448</td>
<td>-29.1460</td>
</tr>
<tr>
<td>B</td>
<td>-49.0555</td>
<td>-49.0566</td>
<td>-49.0586</td>
</tr>
<tr>
<td>C</td>
<td>-75.3162</td>
<td>-75.3778</td>
<td>-75.3800</td>
</tr>
<tr>
<td>N</td>
<td>-108.5890</td>
<td>-108.8068</td>
<td>-108.8092</td>
</tr>
<tr>
<td>O</td>
<td>-149.5352</td>
<td>-149.6242</td>
<td>-149.6326</td>
</tr>
<tr>
<td>F</td>
<td>-198.8155</td>
<td>-198.8184</td>
<td>-198.8216</td>
</tr>
<tr>
<td>Ne</td>
<td>-257.0908</td>
<td>-257.0908</td>
<td>-257.0940</td>
</tr>
<tr>
<td>Na</td>
<td>-323.7126</td>
<td>-323.7132</td>
<td>-323.7180</td>
</tr>
<tr>
<td>Mg</td>
<td>-399.2231</td>
<td>-399.2232</td>
<td>-399.2292</td>
</tr>
<tr>
<td>Al</td>
<td>-483.7464</td>
<td>-483.7466</td>
<td>-483.7536</td>
</tr>
<tr>
<td>Si</td>
<td>-577.6613</td>
<td>-577.7014</td>
<td>-577.7090</td>
</tr>
<tr>
<td>P</td>
<td>-681.2891</td>
<td>-681.4300</td>
<td>-681.4386</td>
</tr>
<tr>
<td>S</td>
<td>-794.9477</td>
<td>-795.0032</td>
<td>-795.01260</td>
</tr>
<tr>
<td>Cl</td>
<td>-918.9542</td>
<td>-918.9552</td>
<td>-918.96520</td>
</tr>
<tr>
<td>Ar</td>
<td>-1053.6244</td>
<td>-1053.6244</td>
<td>-1053.6350</td>
</tr>
</tbody>
</table>

Total ground-state energies for K through Kr (Ry)

<table>
<thead>
<tr>
<th>Atom</th>
<th>Present Work</th>
<th>Previous Work⁽ᵃ⁾</th>
<th>SUHF⁽ᵃ⁾</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-1198.3175</td>
<td>-1198.3182</td>
<td>-1198.3298</td>
</tr>
<tr>
<td>Ca</td>
<td>-1353.5038</td>
<td>-1353.5038</td>
<td>-1353.5164</td>
</tr>
<tr>
<td>Sc</td>
<td>-1519.4522</td>
<td>-1519.4554</td>
<td>-1519.4718</td>
</tr>
<tr>
<td>Ti</td>
<td>-1696.7192</td>
<td>-1969.7604</td>
<td>-1696.8132</td>
</tr>
<tr>
<td>V</td>
<td>-1885.5846</td>
<td>-1885.7138</td>
<td>-1885.7712</td>
</tr>
<tr>
<td>Cr</td>
<td>-2086.3283</td>
<td>-2086.6914</td>
<td>-2086.7136</td>
</tr>
<tr>
<td>Mn</td>
<td>-2299.2269</td>
<td>-2299.7200</td>
<td>-2299.7396</td>
</tr>
<tr>
<td>Fe</td>
<td>-2524.5561</td>
<td>-2524.8760</td>
<td>-2524.9000</td>
</tr>
<tr>
<td>Co</td>
<td>-2762.5906</td>
<td>-2762.7636</td>
<td>-2762.8372</td>
</tr>
<tr>
<td>Ni</td>
<td>-3013.6049</td>
<td>3013.6680</td>
<td>-3013.6606</td>
</tr>
<tr>
<td>Cu</td>
<td>-3277.8730</td>
<td>-3277.9046</td>
<td>-3277.9284</td>
</tr>
<tr>
<td>Zn</td>
<td>-3555.6687</td>
<td>-3555.6688</td>
<td>-3555.6962</td>
</tr>
<tr>
<td>Ga</td>
<td>-3846.4969</td>
<td>-3846.4974</td>
<td>-3846.5224</td>
</tr>
<tr>
<td>Ge</td>
<td>-4150.6565</td>
<td>-4150.6966</td>
<td>-4150.7206</td>
</tr>
<tr>
<td>As</td>
<td>-4468.3206</td>
<td>-4468.4562</td>
<td>-4468.4798</td>
</tr>
<tr>
<td>Se</td>
<td>-4799.6628</td>
<td>-4799.7146</td>
<td>-4799.7382</td>
</tr>
<tr>
<td>Br</td>
<td>-5144.8590</td>
<td>-5144.8600</td>
<td>-5144.8836</td>
</tr>
<tr>
<td>Kr</td>
<td>-5504.0860</td>
<td>-5504.0860</td>
<td>-5504.1100</td>
</tr>
</tbody>
</table>

⁽ᵃ⁾ Grabo, Kreibich, Kurth, & Gross, in Ansimov, ed. *Strong coulomb correlations in electronic structure calculations,* (Gordon and Breach, 2000), pg. 203.
AE results: Exchange potential of 1st and 2nd Row

Exchange potential of C N O F

Exchange potential of Si P S Cl

Xiao Xu and N. A. W. Holzwarth
AE results: Comparing EXX and LDA of Fluorine

- rV_x Fluorine EXX and LDA result
- Density of Fluorine EXX and LDA result

Graphs showing differences between EXX and LDA for Fluorine at various distances.

Xiao Xu and N. A. W. Holzwarth
FC results: Partitioning of $V_{x\text{core}}$ and $V_{x\text{valence}}$

Nitrogen

\[N : 1s^2 \underbrace{2s^22p^3}_{\text{core}} \underbrace{2p^3}_{\text{valence}} \]

Phosphorus

\[P : 1s^22s^22p^6 \underbrace{3s^23p^3}_{\text{core}} \underbrace{3s^23p^3}_{\text{valence}} \]
FC results: Partitioning of $V_{x\text{core}}$ and $V_{x\text{val}}$

Iron

- $Fe: 1s^12s^22p^63s^23p^6\,3d^64s^2$
 - rV_x
 - $rV_{x\text{val}}$
 - $rV_{x\text{core}}$

Copper

- $Cu: 1s^12s^22p^63s^23p^6\,3d^94s^2$
 - $Cu:rV_x$
 - $Cu:rV_{x\text{val}}$
 - $Cu:rV_{x\text{core}}$
FC results: Test of FC approximation

Fe: $3d^64s^2 \rightarrow 3d^74s^1$

1. $1s^12s^22p^63s^23p^63d^64s^2$
 - All electron

2. $1s^12s^22p^63s^23p^63d^74s^1$
 - All electron

- $1s^12s^22p^63s^23p^6$ core
- $3d^64s^2$ valence

- $1s^12s^22p^63s^23p^63d^74s^1$
 - $1s^12s^22p^63s^23p^6$ core
 - $3d^74s^1$ valence
FC results: Test of FC approximation

Fe: $3s^2 3p^6 3d^6 4s^2 \rightarrow 3s^2 3p^6 3d^7 4s^1$

1. $1s^1 2s^2 2p^6 3s^2 3p^6 3d^6 4s^2$
 - Allelectron

2. $1s^1 2s^2 2p^6 3s^2 3p^6 3d^7 4s^1$
 - core
 - valence

3. $1s^1 2s^2 2p^6 3s^2 3p^6 3d^7 4s^1$
 - core
 - valence

- $1s^1 2s^2 2p^6 3s^2 3p^6 3d^7 4s^1$
- Allelectron

Graph showing rV_x vs. $R(\text{Bohr})$ with curves labeled 'AE' and 'FC[Ne]'.
Atom centered functions needed for PAW calculation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_i^a(r)$</td>
<td>AE basis function</td>
<td>AE Kohn-Sham eigenstate</td>
</tr>
<tr>
<td>$\tilde{\phi}_i^a(r)$</td>
<td>PS basis function</td>
<td>Constructed; $\tilde{\phi}_i^a(r) \equiv \phi_i^a(r)$ for $r \geq r_c^a$</td>
</tr>
<tr>
<td>$p_i^a(r)$</td>
<td>Projector function</td>
<td>$p_i^a(r) \equiv 0$ for $r \geq r_c^a$ and $\langle p_i^a</td>
</tr>
</tbody>
</table>

PAW transformation from PS $\tilde{\Psi}_n(r) \rightarrow$ AE $\Psi_n(r)$

$$\Psi_n(r) = \tilde{\Psi}_n(r) + \sum_{ai} \left(\phi_i^a(r) - \tilde{\phi}_i^a(r) \right) \langle p_i^a | \tilde{\Psi}_n \rangle$$

- Corrections
- a: site index
- i: basis index
Kohn-Sham equations in PAW formalism

\[(H^{PAW} - \varepsilon_n O)\tilde{\psi}_n(r) = 0\]

PAW Hamiltonian

\[H^{PAW}(r) = \tilde{H}(r) + \sum_{aij} |p_i^a\rangle D_{ij}^a \langle p_j^a|\]

Smooth Hamiltonian and Smooth Effective Potential

\[\tilde{H} = -\frac{\hbar^2}{2m} \nabla^2 + \tilde{V}\]

\[\tilde{V}(r) = \tilde{V}_{loc}(r) + \tilde{V}_{H}(r) + \tilde{V}_{val}(r)\]

\(\tilde{V}_{loc}\) is unscreened local potential

PAW Matrix Elements

\[D_{ij}^a = \langle \phi_i^a | H | \phi_j^a \rangle - \langle \tilde{\phi}_i^a | \tilde{H} | \tilde{\phi}_j^a \rangle\]

Contains All electron part, and corrections

PAW Overlap Function

\[O = 1 + \sum_{aij} |p_i^a\rangle O_{ij}^a \langle p_j^a|\]

\[O_{ij}^a \equiv \langle \phi_i^a | \phi_j^a \rangle - \langle \tilde{\phi}_i^a | \tilde{\phi}_j^a \rangle\]
PAW + OEP Formalism

All Electron OEP Object Function

\[
F^{AE} = E_{tot}[\{\phi_n\}] - \sum_n \lambda_n (\langle \phi_n | \phi_n \rangle - 1) - \sum_n \langle g_n | H_{ks} - \varepsilon_n | \phi_n \rangle
\]

Frozen Core OEP Object Function

\[
F^{FC} = E_{tot}[\{\phi_v\}] - \sum_v \lambda_v (\langle \phi_v | \phi_v \rangle - 1) - \sum_v \langle g_v | H_{ks} - \varepsilon_v | \phi_v \rangle
\]

The PAW Object Function can be constructed in the same way, with similar constraints:

PAW OEP Object Function

\[
F^{PAW} = E_{tot} - \sum_v \lambda_v (\langle \tilde{\psi}_v | O | \tilde{\psi}_v \rangle - 1) - \sum_v \langle \tilde{g}_v | H_{PAW}^{OEP} - \varepsilon_v O | \tilde{\psi}_v \rangle
\]
Motivation and Outline

PAW OEP Formalism and Implementation

Conclusion

All Electron And Frozen core OEP

PAW + OEP

PAW Gradient Search Algorithm

Frozen Core And PAW

FC Gradient Search

Frozen core Shift Function

\[
\frac{\partial F}{\partial V_{\text{valex}}} = - \sum_v (g_v^*(r) \phi_v(r) + c.c)
\]

Frozen core Auxiliary Function

\[
(H_{ks} - \epsilon_v)g_v(r) = \frac{\partial (E_X^{\text{v-v}})}{\partial \phi_n^*} - \nu_{\text{valex}} v(r) \phi(r) - U_v \phi_v(r)
\]

PAW Gradient Search

PAW OEP Shift Function

\[
S(r) = \frac{\partial F_{\text{PAW}}}{\partial V_{\text{valex}}} = - \sum_v (g_v^*(r) \tilde{\psi}_v(r) + c.c)
\]

\[
[S]_{ij} = \frac{\partial F_{\text{PAW}}}{\partial [V_{\text{valex}}]_{ij}} = - \sum_v \langle \tilde{g}_v | p_i \rangle \langle p_j | \tilde{\psi}_v \rangle + c.c.
\]

PAW Auxiliary Function

\[
(H_{\text{PAW}} - E_v O)g_v = \frac{\partial E_X^{\text{v-v}}}{\partial \psi_v^*} - \nu_{\text{valex}} \tilde{\psi}_v - U_v \tilde{\psi}_v
\]

\[
- \sum_{ij} |p_i \rangle \langle V_{\text{valex}} v_{ij} | p_j \rangle \tilde{\psi}_v
\]
Construction of \tilde{V}_{loc}

\tilde{V}_{loc} is a short range unscreened local potential related to the reference pseudopotential $V^{ps}(r)$ according to:

$$\tilde{V}_{loc}(r) = V^{PS}(r) - V_{H}[\tilde{\rho}_v] - \tilde{V}^{v_{ale}}(r)$$
Atompaw OEP results: PAW pseudized exchange potential

\[\tilde{V}_x \] of N

\[\tilde{V}_x \] of P

\[\tilde{V}_x = \tilde{V}_{x,\text{paw}} + \tilde{V}_{x,\text{vale}} \]
Implement a gradient search algorithm → All Electron + OEP code.
Developed a Frozen core scheme; decouple the equations for core and valence contributions.
We examined some elements, and showed that we can improve the FC accuracy by including more orbitals in the valence.
Developed PAW + OEP scheme, constructed the \(\tilde{\phi}_n(r), p_i(r), D_{ij}, \tilde{V}_{loc} \)
Future work: PAW + OEP solid code