Implementation of the Optimized Effective Potential Method within Projector Augmented Wave Scheme

Xiao Xu and N. A. W. Holzwarth

Wake Forest University

March 18, 2009

Supported by NSF grants DMR-0405456, 0427055, and 0705239. Helpful discussion with Leeor Kronik are gratefully acknowledged

Motivation and Outline

Motivation

- The optimized effective potential (OEP) or exact exchange (EXX) formalism is a method which can improve the accuracy of DFT because its ability to avoid self-interaction contributions and more generally treat orbital-dependent functionals.
- The Projector Augmented Wave (PAW) formalism is an efficient pseudopotential-like scheme, which allows for an accurate treatment of the multipole moments in the Hartree and Exchange interactions, making it a natural choice for implementing OEP.

Outline of Talk

- Explain a OEP Gradient Search Algorithm(R. A. Hyman et al, PRB 62, 15521 (2000)).
- 2 Explain a Frozen Core +OEP Gradient Search Algorithm that we developed , with focus on :

Decoupling of valence and core orbital contributions

< ロ > < 同 > < 回 > < 回 > < 回 > <

In the end , explain our PAW + OEP Gradient Search algorithm. Show some early results.

All Electron And Frozen core OEP PAW + OEP

Main equations

Starting With Kohn-Sham equation:

$$\{-\frac{\hbar^2}{2m}\nabla^2+v_s(\mathbf{r})\}\phi_n(\mathbf{r})=\varepsilon_n\phi_n(\mathbf{r})$$

where

$$V_s(r) = V_N(r) + V_H(r) + V_{xc}(r)$$

and the local exchange potential is defined as :

$$V_{xc}(r) = \frac{\partial E_{xc}[\{\phi_n\}]}{\partial n(r)}.$$

The total energy is given by:

$$E_{tot}[n] = E_T[n] + E_N[n] + E_H[n] + E_{xc}[\{\phi_n(\mathbf{r})\}].$$

For the exchange-correlation energy E_{xc} , we use the **exact exchange functional**, and at this moment, we set $E_c = 0$

Exact Exchange Functional(EXX)

$$E_{x}[\{\phi_{n}(\mathbf{r})\}] = -\frac{e^{2}}{2}\sum_{nm}\Theta_{n}\Theta_{m}\delta_{\sigma_{m}\sigma_{n}}\int d^{3}r\int d^{3}r' \frac{\phi_{n}^{*}(\mathbf{r})\phi_{m}^{*}(\mathbf{r}')\phi_{n}(\mathbf{r}')\phi_{m}(\mathbf{r})}{|\mathbf{r}-\mathbf{r}'|}$$

Because the exact exchange energy is orbital dependent ,determining local potential $V_x(r) = \frac{\partial E_x[\{\varphi_k\}]}{\partial n(r)}$ involves solving integral equations. Alternatively , $V_x(r)$ can be solved by minimizing the energy with constraints, suggested by Hyman , Stiles and Zangwill (PRB 62, 15521 (2000)) and Kümmel Perdew (PRL 90, 043004 (2003))

All Electron And Frozen core OEP PAW + OEP

< ロ > < 同 > < 回 > < 回 > < 回 > <

Gradient Search Algorithm All Electron And Frozen Core

Hyman suggested that the OEP object function F to be minimized can be constructed from the total energy and constraint relations.

All Electron OEP Object Function

$$F^{AE} = E_{tot}[\{\phi_n\}] - \sum_n \lambda_n(\langle \phi_n \mid \phi_n \rangle - 1) - \sum_n \langle g_n \mid H_{ks} - \varepsilon_n \mid \phi_n \rangle$$

- **1** λ_n Lagrangian multiplier \leftarrow Normalization Constraint
- **2** $g_n(r)$ Lagrangian multiplier function(Auxiliary Function) \leftarrow KS equation Constraint
- **3** $g_n(r), \lambda_n, \phi_n(r), \epsilon_n, v_x(r)$ independent variables(functions)

For the Frozen Core treatment, only **valence orbitals** $\phi_v(r)$ are treated variationally, and orbitals associated with core states $\phi_c(r)$ are " **frozen** " at their reference configuration.

Frozen Core OEP Object Function

$$F^{FC} = E_{tot}[\{\phi_{\mathbf{v}}\}] - \sum_{\mathbf{v}} \lambda_{\mathbf{v}}(\langle \phi_{\mathbf{v}} \mid \phi_{\mathbf{v}} \rangle - 1) - \sum_{\mathbf{v}} \langle g_{\mathbf{v}} \mid H_{ks} - \varepsilon_{\mathbf{v}} \mid \phi_{\mathbf{v}} \rangle$$

All Electron And Frozen core OEP PAW + OEP

Gradient Search Algorithm :All Electron And Frozen Core

AE Gradient Search

FC Gradient Search

Xiao Xu and N. A. W. Holzwarth

PAW + OEP

All Electron And Frozen core OEP PAW + OEP

 $V_x(r) = V_x^{core}(r) + V_x^{vale}(r)$

æ

Gradient Search Algorithm All Electron And Frozen Core

 $(H_{KS} - \varepsilon_n)g_n(r) \rightarrow \begin{cases} (H_{KS} - \varepsilon_c)g_c(r) \\ (H_{KS} - \varepsilon_y)g_y(r) \end{cases}$

How to decouple the differential equation for the auxiliary function :

Energy and Orbitals	Derivatives
$\phi_n(r) \to \phi_c(r), \phi_v(r)$ $E_x \to E_x^{c-c} + E_x^{v-c} + E_x^{v-v}$	$\frac{\partial E_x}{\partial \phi_n^*(r)} \rightarrow \frac{\partial E_x^{c-c}}{\partial \phi_c^*(r)}, \frac{\partial E_x^{c-v}}{\partial \phi_c^*(r)}, \frac{\partial E_x^{c-v}}{\partial \phi_v^*(r)}, \frac{\partial E_x^{v-v}}{\partial \phi_v^*(r)}$
Auxiliary Function : Core and Valence	Exchange Potential Partitioning

All Electron And Frozen core OEP PAW + OEP

Gradient Search Algorithm All Electron And Frozen Core

How to decouple the differential equation for the auxiliary function :

AE Auxiliary Function

$$(H_{KS} - \varepsilon_n)g_n(r) = \frac{\partial E_x}{\partial \phi_n^*(r)} - V_x \phi_n(r) - U_n \phi_n(r)$$

Frozen core Auxiliary Function

$$(H_{ks} - \varepsilon_v)g_v(r) = \frac{\partial(E_x^{v-v})}{\partial\phi_v^*} - V_x^{vale}\phi_v(r) - U_v\phi_v(r)$$

Frozen core Shift Function

$$s(r) = rac{\partial F}{\partial V_x^{vale}} = -\sum_v \left(g_v^*(r)\phi_v(r) + c.c\right)
ightarrow Update V_x^{vale}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

All Electron And Frozen core OEP

AE results : Ground State Energy

Total ground-state energies for H through Ar (Ry)				Total ground-state energies for K through Kr (Ry)				
Atom	Present Work	Previous Work ^a	SUHF ^a	11	Atom	Present Work	Previous Work ^a	SUHF ^a
Н	-1.0000	-1.000	-1.000		ĸ	-1198.3175	-1198.3182	-1198.3298
He	-5.7234	-5.7234	-5.7234		Ca	-1353.5038	-1353.5038	-1353.5164
Li	-14.8647	-14.8650	-14.8656		Sc	-1519.4522	-1519.4554	-1519.4718
Be	-29.1449	-29.1448	-29.1460		Ti	-1696.7192	-1969.7604	-1696.8132
В	-49.0555	-49.0566	-49.0586		V	-1885.5846	-1885.7138	-1885.7712
С	-75.3162	-75.3778	-75.3800		Cr	-2086.3283	-2086.6914	-2086.7136
N	-108.5890	-108.8068	-108.8092		Mn	-2299.2269	-2299.7200	-2299.7396
0	-149.5352	-149.6242	-149.6326		Fe	-2524.5561	-2524.8760	-2524.9000
F	-198.8155	-198.8184	-198.8216		Co	-2762.5906	-2762.7636	-2762.8372
Ne	-257.0908	-257.0908	-257.0940		Ni	-3013.6049	3013.6680	-3013.6606
Na	-323.7126	-323.7132	-323.7180		Cu	-3277.8730	-3277.9046	-3277.9284
Mg	-399.2231	-399.2232	-399.2292		Zn	-3555.6687	-3555.6688	-3555.6962
A	-483.7464	-483.7466	-483.7536		Ga	-3846.4969	-3846.4974	-3846.5224
Si	-577.6613	-577.7014	-577.7090		Ge	-4150.6565	-4150.6966	-4150.7206
Р	-681.2891	-681.4300	-681.4386		As	-4468.3206	-4468.4562	-4468.4798
S	-794.9477	-795.0032	-795.01260		Se	-4799.6628	-4799.7146	-4799.7382
CI	-918.9542	-918.9552	-918.96520		Br	-5144.8590	-5144.8600	-5144.8836
Ar	-1053.6244	-1053.6244	-1053.6350	J.	Kr	-5504.0860	-5504.0860	-5504.1100

^aGrabo, Kreibich, Kurth, & Gross, in Ansimov, ed. Strong coulomb correlations in electronic structure calculations, (Gordon and Breach, 2000), pg. 203.

イロト イ理ト イヨト イヨト

æ

All Electron And Frozen core OEP PAW + OEP

AE results : Exchange potential of 1st and 2nd Row

Exchange potential of C N O F

Exchange potential of Si P S CI

• • • • • • • • • • • •

All Electron And Frozen core OEP PAW + OEP

AE results :Comparing EXX and LDA of Fluorine

All Electron And Frozen core OEP PAW + OEP

FC results :Partitioning of V_{xcore} and V_{xvale}

Phosphorus

イロト イ理ト イヨト イヨト

크

Conclusion

All Electron And Frozen core OEP PAW + OEP

FC results :Partitioning of V_{xcore} and V_{xvale}

イロン イ理 とく ヨン イヨン

2

All Electron And Frozen core OEP PAW + OEP

イロト イ理ト イヨト イヨト

FC results : Test of FC approximation

All Electron And Frozen core OEP PAW + OEP

< ロ > < 同 > < 回 > < 回 > < 回 > <

FC results : Test of FC approximation

PAW Introduction

Atom centered functions needed for PAW calculation

Symbol	Meaning	Properties
$\phi_i^a(\mathbf{r})$	AE basis function	AE Kohn-Sham eigenstate
$\widetilde{\phi}^{a}_i(\mathbf{r})$	PS basis function	Constructed; $\tilde{\phi}_i^a(\mathbf{r}) \equiv \phi_i^a(\mathbf{r})$ for $r \ge r_c^a$
$p_i^a(\mathbf{r})$	Projector function	$p_i^a(\mathbf{r}) \equiv 0$ for $r \ge r_c^a$ and $\langle p_i^a \widetilde{\phi}_j^a \rangle = \delta_{ij}$

PAW transformation from $PS\widetilde{\Psi}_n(r) \rightarrow AE\Psi_n(r)$

$$\Psi_n(r) = \widetilde{\Psi}_n(r) + \sum_{ai} \underbrace{(\phi_i^a(r) - \widetilde{\phi}_i^a(r))}_{i} \left\langle p_i^a \mid \widetilde{\Psi}_n \right\rangle$$

Corrections

< ロ > < 同 > < 三 > < 三 > -

æ

a: site index i: basis index

All Electron And Frozen core OEP PAW + OEP

PAW Introduction

Kohn-Sham equations in PAW formalism

$$(H^{PAW} - \varepsilon_n O)\widetilde{\Psi}_n(r) = 0$$

Smooth Hamiltonian and Smooth Effective Potential

$$\begin{split} \widetilde{H} &= -\frac{\hbar^2}{2m} \nabla^2 + \widetilde{V} \\ \widetilde{V}(r) &= \widetilde{V}_{loc}(r) + \widetilde{V}_{H}(r) + \widetilde{V}_{X}^{vale}(r) \\ \widetilde{V}_{loc} \text{ is unscreened local potential} \end{split}$$

PAW Hamiltonian

$$H^{PAW}(r) = \widetilde{H}(r) + \sum_{aij} |p_i^a\rangle |D_{ij}^a\langle p_j^a|$$

PAW Matrix Elements

$$D_{ij}^{a} = \left\langle \phi_{i}^{a} | H | \phi_{j}^{a} \right\rangle - \left\langle \tilde{\phi}_{i}^{a} \left| \tilde{H} \right| \tilde{\phi}_{j}^{a} \right\rangle$$

Contains All electron part , and corrections

PAW Overlap Function

$$\begin{split} \mathcal{O} &= 1 + \sum_{aij} \left| p_i^a \right\rangle \mathcal{O}_{ij}^a \left\langle p_j^a \right| \\ \mathcal{O}_{ij}^a &\equiv \left\langle \phi_i^a \mid \phi_j^a \right\rangle - \left\langle \tilde{\phi}_i^a \mid \tilde{\phi}_j^a \right\rangle \end{split}$$

Xiao Xu and N. A. W. Holzwarth

PAW + OEP

PAW + OEP

PAW + OEP Formalism

All Electron OEP Object Function

$$F^{AE} = E_{tot}[\{\phi_n\}] - \sum_n \lambda_n(\langle \phi_n \mid \phi_n \rangle - 1) - \sum_n \langle g_n \mid H_{ks} - \varepsilon_n \mid \phi_n \rangle$$

Frozen Core OEP Object Function

$$F^{FC} = E_{tot}[\{\phi_{v}\}] - \sum_{v} \lambda_{v}(\langle \phi_{v} \mid \phi_{v} \rangle - 1) - \sum_{v} \langle g_{v} \mid H_{ks} - \varepsilon_{v} \mid \phi_{v} \rangle$$

The PAW Object Function can be constructed in the same way, with similar constraints :

PAW OEP Object Function

$$F^{PAW} = E_{tot} - \sum_{v} \lambda_{v} (\left\langle \widetilde{\Psi}_{v} \mid O \mid \widetilde{\Psi}_{v} \right\rangle - 1) - \sum_{v} \left\langle \widetilde{g}_{v} \mid H^{PAW} - \varepsilon_{v} O \mid \widetilde{\Psi}_{v} \right\rangle$$

All Electron And Frozen core OEP PAW + OEP

PAW Gradient Search Algorithm Frozen Core And PAW

FC Gradient Search

Frozen core Shift Function $\frac{\partial F}{\partial V_x^{vale}} = -\sum_v (g_v^*(r)\phi_v(r) + c.c)$

PAW Gradient Search

PAW OEP Shift Function

$$\begin{split} S(r) &= \frac{\partial F^{PAW}}{\partial \tilde{V}_{\mathbf{v}}^{\mathbf{vale}}} = -\sum_{\mathbf{v}} \left(\tilde{g}_{\mathbf{v}}^{*}(r) \tilde{\Psi}_{\mathbf{v}}(r) + C.C \right) \\ [S]_{ij} &= \frac{\partial F^{PAW}}{\partial [V^{\mathbf{vale}}]_{ii}} = -\sum_{\mathbf{v}} \left(\left\langle \tilde{g}_{\mathbf{v}} \mid p_{i} \right\rangle \left\langle p_{j} \mid \tilde{\Psi}_{\mathbf{v}} \right\rangle + C.C \right) \end{split}$$

PAW Auxiliary Function

Frozen core Auxiliary Function

$$(H_{ks} - \varepsilon_V)g_V(r) = \frac{\partial(E_X^{V-V})}{\partial \phi_R^*} - V_X^{Vale}(r)\phi(r) - U_V\phi_V(r)$$

$$(H^{PAW} - E_V O)\tilde{g}_V = \frac{\partial E_X^{V-V}}{\partial \tilde{\Psi}_V^*} - \tilde{V}_X^{Vale} \tilde{\Psi}_V - U_V O \tilde{\Psi}_V$$
$$- \sum_{ij} |p_i\rangle [V_X^{Vale}]_{ij} \langle p_j \mid \tilde{\Psi}_V \rangle$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

PAW + OEP

Construction of V_{loc}

 \tilde{V}_{loc} is a short range unscreened local potential related to the reference pseudopotential $V^{ps}(r)$ according to :

PAW Unscreen Procedure

$$\widetilde{V}_{loc}(r) = V^{PS}(r) - V_{H}[\widetilde{
ho}_{v}] - \widetilde{V}_{x}^{vale}(r)$$

Xiao Xu and N. A. W. Holzwarth

All Electron And Frozen core OEP PAW + OEP

Atompaw OEP results: PAW pseudized exchange potential

< ロ > < 同 > < 回 > < 回 > < 回 > <

크

Conclusion

- Implement a gradient search algorithm \rightarrow All Electron + OEP code .
- Developed a Frozen core scheme ; decouple the equations for core and valence contributions.
- We examined some elements ,and showed that we can improve the FC accuracy by including more orbitals in the valence.
- Developed PAW + OEP scheme, constructed the

 $\widetilde{\phi}_n(r)$, $p_i(r)$, D_{ij} , \widetilde{V}_{loc}

• Future work : PAW + OEP solid code