

1

A formalism for modeling solid electrolyte/electrode interfaces using first principles methods*

Nicholas D. Lepley^{**} and <u>N. A. W. Holzwarth</u> Wake Forest University, Winston-Salem, NC, USA

Ref: N. D. Lepley and N. A. W. Holzwarth, **PRB 92**, 214201 (2015) N. D. Lepley, *Ph. D Thesis*, Wake Forest University, 2015.

*Research was supported by NSF DMR 1105485 and 1507942. Computations were performed on WFU's DEAC cluster.

**Currently participating in a Data Science Fellowship program. APS March 2016

FOCUS: Solid state batteries – understanding interfaces between electrolytes and electrodes

- > Develop and analyze a quantitative measure of interface energy, adjusting for the effects of lattice strain $\tilde{\gamma}_{ab}^{int}$ which is particularly helpful for studying (meta-)stable interfaces
- Analyze the relationship of bulk and interface stability of Li₃PO₄/Li and Li₃PS₄/Li interfaces
- Analyze the effects of charge transfer across an interface

FOCUS: Solid state batteries – understanding interfaces between electrolytes and electrodes

Ideal interface

Strained interface

Interacting interface

3/17/2016

Calculational methods:

- Density functional theory with LDA (Perdew, PRB 45, 13244 (1992))
- Projector Augmented Wave method (Blöchl, PRB 50, 17953 (1994))
- ATOMPAW atomic datasets (Holzwarth, CPC **135**, 329 (2001))
- Quantum Espresso code (Giannozzi, J. Phy.:CM **21**, 395502 (2009))
- Plane wave cut off: $|\mathbf{k} + \mathbf{G}|^2 \le 64 \text{ bohr}^{-2}$
- Nudged elastic band simulations (Henkelman, JCP **113**, 9978 (2000)
- Visualization software: Kokalj, Comp. Mater. Sci. 28, 155 (2003) and Momma, Acta Cryst. 44, 1272 (2011)

It is convenient to model the interface between a solid electrolyte and solid electrode in the slab geometry using a periodic simulation cell:

3/17/2016

APS March 2016

5

Within any given periodic simulation cell with n_a units of material a and with n_b units of material b, we can define an interface energy:

In order approximately remove the effects of lattice strain: • Design the supercell to be commenserate with lattice *a* • Now the strain will scale with the amount of material *b* $\Rightarrow \tilde{\gamma}_{ab} \left(\tilde{\Omega}, n_a, n_b \right) = \tilde{\gamma}_{ab}^{\lim} \left(\tilde{\Omega} \right) + n_b \sigma$

System	${\widetilde \gamma}^{ m lim}_{ab}$ (meV/Ų)	σ (meV/Ų)
$Li_{2}O[110]/Li(\Omega_{1})$	30	6.1
Li ₂ O[110]/Li(Ω ₂)	26	0.2
Li ₂ S[110]/Li(Ω ₃)	19	0.2
$Li_2S[100]/Li(\Omega_4)$	19	0.0
$\gamma-{\sf Li}_3{\sf PO}_4$ [010]/Li(Ω_3)	31	0.0
γ–Li ₃ PS ₄ [010]/Li ₂ S [110]	16	1.0
γ–Li ₃ PS ₄ [010]/Li	-216	-0.1

	System	${\widetilde \gamma}^{ m lim}_{ab}$ (meV/Ų)	σ (meV/Ų)
	Li ₂ O[110]/Li(Ω ₁)	30	6.1
	$Li_2O[110]/Li(\Omega_2)$	26	0.2
	$Li_2S[110]/Li(\Omega_3)$	19	0.2
	$Li_2S[100]/Li(\Omega_4)$	19	0.0
	$\gamma-\text{Li}_3\text{PO}_4$ [010]/Li(Ω_3)	31	0.0
	γ–Li ₃ PS ₄ [010]/Li ₂ S [110]	16	1.0
	γ–Li ₃ PS ₄ [010]/Li	-216	-0.1

Stable interface; composite electrolyte system

3/17/2016

	System	${\widetilde \gamma}^{ m lim}_{ab}$	(meV/Ų)	σ	(meV/Ų)	
	Li ₂ O[110]/Li(Ω ₁)		30		6.1	
	Li ₂ O[110]/Li(Ω ₂)		26		0.2	
	$Li_2S[110]/Li(\Omega_3)$		19		0.2	
	$Li_2S[100]/Li(\Omega_4)$		19		0.0	
	$\gamma-\text{Li}_3\text{PO}_4$ [010]/Li(Ω_3)		31		0.0	
N	γ–Li ₃ PS ₄ [010]/Li ₂ S [110]		16		1.0	
	γ–Li ₃ PS ₄ [010]/Li		-216		-0.1	

3/17/2016

APS March 2016

 $Li_3PS_4 + 8Li \longrightarrow Li_3P + 4Li_2S + 12.30 eV$

Partial density of states analysis of unstable Li_3PS_4/Li interface:

Bulk reactions from estimated heats of formation

$Li_3PS_4 + 8Li \longrightarrow Li_3P + 4Li_2S + 12.30 eV$ Decomposition at interface

$Li_3PO_4 + 8Li \longrightarrow Li_3P + 4Li_2O + 6.64 eV$ (Meta-)stable interface

Evidence of kinetic barrier at Li₃PO₄/Li interface

Modeling of charge transfer in Li_3PO_4/Li system

3/17/2016

Summary and conclusions

- > A practical scheme was developed to compute an intensive measure of the interface interaction $\tilde{\gamma}_{ab}^{int}$, explicitly accounting for the effects of lattice stain.
- Discussed bulk reactivity as related to the interface stability of the interfaces of
 - Li₃PO₄/Li (having a significant kinetic barrier to decomposition)
 - \succ Li₃PS₄/Li (having localized decomposition).
- Discussed effects of charge transfer across Li₃PO₄/Li interfaces – small supercells result in large internal electrostatic fields